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 For L., with whom I fell, first from the bicycle and then in love



 Preface
Topological combinatorics is a very young and exciting field of research in mathematics. It is mostly
concerned with the application of the many powerful tools of algebraic topology to combinatorial
problems. One of its early landmarks was Lovász’s proof of the Kneser conjecture published in 1978.
The combination of the two mathematical fields—topology and combinatorics—has led to many
surprising and elegant proofs and results.

In this textbook I present some of the most beautiful and accessible results from topological
combinatorics. It grew out of several courses that I have taught at Freie Universität Berlin, and is
based on my personal taste and what I believe is suitable for the classroom. In particular, it aims for a
clear and vivid presentation rather than encyclopedic completeness.

The text is designed for an advanced undergraduate level. Primarily it serves as a basis for a
course, but is written in such a way that it just as well may be read by students independently. The
textbook is essentially self-contained. Only some basic mathematical experience and knowledge—in
particular some linear algebra—is required. An extensive appendix allows the instructor to design
courses for students with very different prerequisites. Some of those designs will be sketched later on.

The textbook has four main chapters and several appendices. Each chapter ends with an
accompanying and complementing set of exercises. The main chapters are mostly independent of each
other and thus allow considerable flexibility for an individual course design. The dependencies are
roughly as follows.

Suggested Course Outlines
For students with previous knowledge of graph theory and the basics of algebraic topology including
simplicial homology theory. Use Chaps. 1 – 4 . Whenever concepts and results on partially ordered sets
and their topology from Appendix C or on group actions from Appendix D are missing, they should be
included. Oliver’s Theorem 3.17, which is proven in Appendix E, can easily be used as a black box. If
the students are experienced with homology and if time permits, I recommend studying Appendix E
after Chap. 3 . For students with previous knowledge of the basics of algebraic topology including
simplicial homology theory only. Proceed as in the last case and provide the basics of graph theory
from Appendix A along the way. For students with previous knowledge of graph theory only. I
recommend that the instructor introduces some basic topology with Sects. B.1 and B.3, and then
presents Chap. 1 , skipping the homological proofs. Before Sect. 1.6 I recommend giving a topology
crash course with Sects. B.4–B.9. Proceed with Chaps. 2 – 4 and add concepts and results from
Appendices C and D as needed. Apply Theorem 3.17 as a black box and use Appendix E as a
motivation to convince students to study algebraic topology. For motivated students with neither



 
graph theory nor algebraic topology knowledge. Proceed as in the last case and provide the basics
from graph theory from Appendix A along the way.
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List of Symbols and Typical Notation
the set of natural numbers from 1 to n

 | the number of elements of a set S
the largest integer less than or equal to x

n notation for “ k divides n ”
the subset relation
the proper subset relation

a partition of the set S , i.e., S  =  S1 ∪⋯ ∪ Sn and Si  ∩  Sj  =  ∅ for all i  ≠  j
the number of k -element subsets of an n -element set

the set of k -element subsets of a set X

the sum of sets X and Y
abstract simplicial complexes
geometric simplicial complexes

notation for “the simplex τ is a face of the simplex σ”
the standard geometric n -simplex

the geometric simplicial complex given by σ n and all its faces
the abstract simplicial complex associated with the geometric complex Δ (cf. page 177)

the polyhedron of the geometric simplicial complex Δ
a geometric realization of the abstract complex K or its polyhedron
the power set of X , i.e., 

will be identified with the power set of X
will be identified with the power set of [ n ]

will be identified with the power set of σ, in this notation refers to the abstract simplicial
complex given by the simplex σ and all its faces

the Euclidean norm
the maximum norm

the n -dimensional unit ball
the ( n  − 1)-dimensional unit sphere

the ( n  + 1)-dimensional cross polytope

the n -dimensional geometric simplicial complex associated with the boundary of the cross
polytope Qn  + 1
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1. Fair-Division Problems

Mark de Longueville1 

Hochschule für Technik und Wirtschaft Berlin, University of Applied Sciences, Berlin, Germany

 
Abstract
Almost every day, we encounter fair-division problems: in the guise of dividing a piece of cake,
slicing a ham sandwich, or by dividing our time with respect to the needs and expectations of family,
friends, work, etc.
Almost every day, we encounter fair-division problems: in the guise of dividing a piece of cake,
slicing a ham sandwich, or by dividing our time with respect to the needs and expectations of family,
friends, work, etc.

The mathematics of such fair-division problems will serve us as a first representative example for
the interplay between combinatorics and topology.

In this chapter we will consider two important concepts: envy-free fair division and consensus
division. These concepts lead to different topological tools that we may apply. On the one hand, there
is Brouwer’s fixed-point theorem, and on the other hand, there is the theorem of Borsuk and Ulam.
These topological results surprisingly turn out to have combinatorial analogues: the lemmas of
Sperner and Tucker. Very similar in nature, they guarantee a simplex with a certain labeling in a
labeled simplicial complex.

The chapter is organized in such a way that we will discuss in turn a topological result, its
combinatorial analogue, and the corresponding fair-division problem.

1.1 Brouwer’s Fixed-Point Theorem and Sperner’s Lemma
Brouwer’s fixed-point theorem states that any continuous map from a ball of any dimension to itself
has a fixed point. In two dimensions this can be illustrated as follows. Take two identical maps of
Berlin or any other ball-shaped city. Now crumple one of the maps as you like and throw it on the
other, flat, map as shown in Fig. 1.1. Then there exists a location in the city that on the crumpled map
is exactly above the same place on the flat map.



 
Fig. 1.1 A city map twice

For the general formulation of Brouwer’s theorem, recall that the n-dimensional Euclidean ball is
given by all points of distance at most 1 from the origin in n-dimensional Euclidean space, i.e.,

Theorem 1.1 (Brouwer). 
Every continuous map  from the n-dimensional ball  to itself has a fixed point, i.e., there
exists an  such that f(x) = x.

The first proof that we provide for this theorem relies on a beautiful combinatorial lemma that we will
discuss in the next section. There also exists a very short and simple proof using homology theory that
we present on page 20.

Sperner’s Lemma
Brouwer’s fixed-point theorem is intimately related to a combinatorial lemma by Sperner that deals
with labelings of triangulations of the simplex. Consider the standard n-simplex given as the convex
hull of the standard basis vectors , see Fig. 1.2:

Fig. 1.2 The standard 2-simplex 

By Δ n we denote the (geometric) simplicial complex given by σ n and all its faces, i.e., 
. Assume that K is a subdivision of Δ n . We may think of K as being obtained from Δ

n by adding extra vertices. For precise definitions and more details on simplicial complexes we refer
to Appendix B. For any n, denote the set {1, …, n} by [n]. In the definition of a Sperner labeling we
will use labels from 1 to n + 1, i.e., labels from the set [n + 1].

Definition 1.2.
A Sperner labeling is a labeling  of the vertices of K satisfying



 
for all v ∈ vert(K).

More intuitively, a Sperner labeling is the following. Consider the minimal face of Δ n that contains v.
Say it is given by the convex hull of . Then v is allowed to get labels only from {i 1, …, i k }.
In particular, the vertices e i obtain label i, while a vertex along the edge spanned by e i and e j obtains
the label i or j, and so on. For an illustration see Fig. 1.3.

Fig. 1.3 A Sperner-labeled triangulation of a 2-simplex

Call an n-simplex of Kfully labeled (with respect to λ) if its n + 1 vertices obtain distinct labels,
i.e., if all possible labels from the set [n + 1] appear.

Lemma 1.3 (Sperner [Spe28]). 
Let λ : vert (K) → [n + 1] be a Sperner labeling of a triangulation K of the n-dimensional simplex.
Then there exists a fully labeled n-simplex in K. More precisely, the number of fully labeled n-
simplices is odd.

We will now present two inductive proofs of this amazing lemma. The first is a combinatorial
construction that constructs one of the desired simplices, while the other is algebraic and uses the
concept of a chain complex of a simplicial complex. The inductive proofs reveal a typical
phenomenon: while we are mainly interested in the existence of a fully labeled simplex, the induction
works only for the stronger statement that there is an odd number of fully labeled simplices.

A third proof, given on page 21 of this section, proves the Sperner lemma as an application of
Brouwer’s fixed-point theorem.

Proof (combinatorial). 
The lemma is clearly valid for n = 1. Now let n ≥ 2 and consider the (n − 1)-dimensional face τ of Δ n
given by the convex hull of e 1, …, e n . Note that K restricted to τ is Sperner labeled with label set [n].
We construct a graph as follows. Let the vertex set be all n-simplices of K plus one extra vertex o. The
extra vertex o is connected by an edge to all n-simplices that have an (n − 1)-simplex as a face that is
labeled with all labels of [n] and lies within τ. Two n-simplices are connected by an edge if and only if
they share an (n − 1)-dimensional face labeled with all of [n]. See Fig. 1.4 for an example of the
resulting graph.



 
By the induction hypothesis, the vertexohas odd degree, since there is an odd number offully labeled
simplices in the labeling restricted toτ.All the other vertices have degree zero, one, ortwo. To see this,
consider the set of labels ann-simplexobtains: either it does not contain [n],it is [n + 1],or it is [n].In
the first case, the simplex has degree zero; in the second, it has degree one;and in the last case, it has
degree two, since exactly two faces obtain all of[n]as label set; compare Fig. 1.5. Hence the vertices of
degree one other than o (which may have degree one) correspond to the fully labeled simplices. Now,
the number of vertices of odd degree in a graph is even. (This is easy to prove; cf. Corollary A.2 in
Appendix A.) Since the degree of o is odd, there remains an odd number of fully labeled simplices.

Proof (algebraic). 
We proceed by induction. The case n = 1 is an easy exercise. Now assume n ≥ 2. The labeling λ induces
a simplicial map from K to Δ n defined on the vertices by . Consider the induced map  on
the -simplicial chain complex level

Let o denote the element of  given by the sum of all n-simplices of K. Clearly, the Sperner
lemma holds if , the generator (and only nontrivial element) of . Now consider the
following diagram, which is commutative by the fact that λ ∗  is a chain map:

Hence, it suffices to show that λ n − 1 ∂ n (o) ≠ 0. In order to compute λ n − 1 ∂ n (o), let τ1, …, τ n + 1
denote the (n − 1)-dimensional faces of Δ n . Define  to be the sum of all (n − 1)-

dimensional faces of K that lie in τ i . Then ∂ n (o) =  , and by the induction hypothesis, λ n − 1(c i
) = τ i , and hence .

Brouwer’s Theorem via Sperner’s Lemma
Finally, we can give an elementary proof of Brouwer’s fixed-point theorem relying on Sperner’s
lemma.



 
Fig. 1.4 The graph associated to a Sperner labeling

Fig. 1.5 An example of labeled n-simplices of degrees 0, 1, and 2 in the case n = 3

Proof (of Brouwer’s fixed-point theorem). 
Since  and the standard n-simplex are homeomorphic, we may consider a continuous map f :  | Δ n  | 
→ | Δ n  | , where Δ n is the (geometric) simplicial complex given by the standard n-simplex and all its
faces. Consider the kth barycentric subdivisions sd k Δ n , k ≥ 1. If, for some k, one of the vertices of sd
k Δ n happens to be a fixed point, we are done. Otherwise, we construct a sequence (σ k ) k ≥ 1 of
simplices of decreasing size such that any accumulation point of this sequence will be a fixed point of
f. By an accumulation point we mean a point x ∈ | Δ n  | such that each ε-ball about x contains infinitely
many of the σ k , k ≥ 1. In order to do this, we endow the kth barycentric subdivision sd k Δ n with a
Sperner labeling as follows. For v ∈ vert(sd k Δ n ) let λ(v) be the smallest i such that the ith coordinate
of f(v) − v is negative, i.e.,

Such an i exists, since the sum over all coordinates of f(v) − v is zero and v is not a fixed point. This
labeling is indeed a Sperner labeling, since for v i  = 0, we certainly have f(v) i  − v i  ≥ 0. Hence, by
Sperner’s lemma, there exists a fully labeled simplex σ k .

Now let x be an accumulation point of the sequence (σ k ) of simplices. For the existence of such an
x we refer to Corollary B.48 and Exercise 16 on page 195. Hence, for each i and any ε > 0, there exist a
k ≥ 1 and a vertex v ∈ vert(σ k ) such that | x − v |  < ε and f(v) i  − v i  < 0. By continuity, we obtain the
inequality f(x) i  − x i  ≤ 0 for all i. But since the sum  is zero, this is possible only if

f(x) = x.

Brouwer’s Theorem via Homology Theory
As previously announced, we provide a proof of Brouwer’s theorem using only the basics of homology
theory typically taught in a first course on algebraic topology. More details on the necessary
background can be found in Appendix B.

Proof (using homology theory). 
Assume that  is a continuous map without a fixed point. For each x, consider the ray from
f(x) in the direction of x. This ray hits the boundary sphere  of  in a point
that we call r(x); see Fig. 1.6. Then  is a continuous map that when restricted to the
sphere, is the identity map, i.e., , where  is the inclusion map. Such a map is
called a retraction map. We obtain the following induced maps in homology:



 
Now,  is the identity map of , which is isomorphic

to the integers ℤ. But since  is trivial, we arrive at a contradiction.

Sperner’s Lemma Derived from Brouwer’s Theorem
As remarked in the introduction to this chapter, Sperner’s lemma may be considered a combinatorial
analogue of Brouwer’s theorem. This is due to the fact that there is also a way to deduce Sperner’s
lemma from Brouwer’s fixed-point theorem. We end this section by proving this.

Fig. 1.6 The retraction map r

Proof (of Sperner’s lemma with Brouwer’s fixed-point theorem). 
Let  be a Sperner labeling of a triangulation K of Δ n . We construct a continuous

map  as an affine linear extension of the simplicial map from K to Δ n defined on the
vertices of K by .

Observe that there exists a fully labeled simplex if and only if f is surjective. To prove this, it
suffices to show that some point in the interior of | Δ n  | is in the image of f. It is a good exercise to
show that the map f is fixed-point-free on the boundary of | Δ n  | . The existence of a fixed point yields
the desired conclusion.

1.2 Envy-Free Fair Division
Sometimes it is hard to divide a piece of cake among several people, especially if the cake contains
tasty ingredients such as nuts, raisins, and chocolate chips that may be distributed unevenly and if we
take into account that preferences among several people are often quite different. This calls for a
procedure to find a solution that is satisfying for everyone. In order to do this, we first have to specify
more precisely what we mean by “satisfying for everyone.” Ludwig Erhard, German chancellor in the
1960s, once said, “Compromise is the art of dividing a cake such that everyone is of the opinion he has
received the largest piece.” This seemingly paradoxical statement is pretty much what our definition
of envy-free fair division is going to be!

A Fair-Division Model
Let’s say we have n people among whom the cake is to be divided. Each person might have his or her
own idea about which content of the cake is valuable: for one it’s the nuts, for another it’s the
chocolate, and so on. Figure 1.7 shows a cake with colored chocolate beans indicating the different
preferences. We model the piece of cake with an interval I = [0, 1] (which might be thought of as a
projection of the cake), and the predilections of the people by continuous probability measures μ 1 ,



 
…,μ n . Continuous means that the functions  are continuous in t. The continuity condition
implies that the measures evaluate to zero on single points, i.e., μ i ({t}) = 0 for all t ∈ I.

Fig. 1.7 A cake with different tasty ingredients

Let’s assume that the cake is divided into n pieces (each measurable with respect to all μ i ), i.e., I 
= A 1 ∪⋯ ∪A n , where A i  ∩ A j is a finite set of points for each i ≠ j, and person i is to receive the
piece A π(i) for some permutation π.

Definition 1.4.
The division (A 1, …, A n ; π) of the cake is called fair if  for all i. It is called envy-free if 

 for all i, j.

The last condition says that each person receives a piece that is (according to its measure) at least as
large as all the other pieces.

The permutation π might seem unnecessary at this point, but for the purpose of upcoming proofs
we need to be able to assign the n pieces of a fixed division to the n people.

Practical Cake-Cutting
There are several interesting approaches to obtaining solutions to fair cake-cutting. The simplest is the
following. Let t be the smallest value such that there exists an i with . This means that for

all other j, the rest of the cake, i.e., [t, 1], has size at least . Therefore, person i is to receive the
piece [0, t] and the others proceed by induction on the rescaled piece. Note that this procedure
produces n − 1 cuts of the cake, and hence n intervals, i.e., the fewest number possible.

This procedure is often referred to as the moving-knife algorithm, and it works as follows. Some
person slowly moves a knife along the cake. If the portion of the cake that has been covered by the
moving knife has reached size  for some person, then this person yells “stop!” The cake is cut right



 
there, and the person who yelled receives the piece. If more than one person yelled, the piece is given
to one of them. From a practical viewpoint, this has the advantage that every person feels treated
fairly. But of course, in general, the divisions obtained in this way are not envy-free. There are several
algorithms one can use to obtain an envy-free division of the cake. But these often require many cuts
of the cake; cf. [RW98].

The Simplex as Solution Space
Here we want to concentrate on the existence and approximation of an envy-free solution that can be
obtained by n − 1 cuts.

A division of the unit interval into n successive intervals is determined by the vector  of
their lengths, and all possible such division vectors constitute the standard (n − 1)-simplex if we allow
intervals of length zero.

The first proof of the existence of an envy-free fair-division solution with n − 1 cuts by
Woodall [Woo80] is a construction whose topological engine is Brouwer’s fixed-point theorem. There
is an easier construction that—not surprisingly—relies on Sperner’s lemma. Moreover, this
construction yields a method to find approximate solutions described by Su [Su99], which has a nice
implementation called the “Fair division calculator” and is available on the Internet.

A Sperner Labeling Approach
In order to find an approximate solution, consider a barycentric subdivision sd k Δ n − 1 for some k. Our
construction will consist of two consecutive labelings of the vertices, the second of which is going to
be a Sperner labeling. The first labeling is rather simple. Label the vertices of sd k Δ n − 1 with labels p
1, …, p n in such a manner that the vertices of each (n − 1)-simplex obtain all labels p 1, …, p n , as
demonstrated in Fig. 1.8. Such a labeling is easy to derive and is the content of Exercise 4.

Fig. 1.8 First labeling of vert(sd k Δ n − 1)

To define the second labeling, consider a vertex v = (t 1, …, t n ) of sd k Δ n − 1 with, say, label . It
defines the division . Denote the kth interval by I k and let 

 be the size of the largest piece according to person i 0. Define the
labeling by



 
In other words, λ(v) describes the number of a piece that is largest for person i 0. Certainly

since the largest piece will not be an interval of length 0, and hence λ is a bona fide Sperner
labeling. For an example see Fig. 1.9.

Fig. 1.9 An example of the labeling λ

By Sperner’s lemma, we obtain a fully labeled (n − 1)-simplex σ k , which means that the n
different people associated with the n vertices of σ k all choose a different interval. More precisely, σ k
defines a permutation π k : [n] → [n], where π k (i) = j if λ(v) = j for the vertex v of σ k labeled with p i .
Now let x k be the barycenter of the simplex σ k and consider the sequence (x k ). By compactness, there
exists a convergent subsequence . Since there is only a finite number of permutations of [n], we
may even choose this subsequence with the additional property that the sequence  of associated
permutations is constant. Let x = (t 1, …, t n ) be the limit of this subsequence and π the constant
permutation. The associated division (A 1, …, A n ; π) is the desired envy-free solution, as is easy to
prove and is the content of an exercise. Thus we obtain the following result.

Theorem 1.5.
Let  be n continuous probability measures on the unit interval. Then there exists an envy-free
division  such that all of the A i are intervals.

Note that, moreover, an approximate solution can be found in a finite number of steps: in fact, for any
given ε > 0, there exist a k ≥ 0, a simplex σ k  ∈ sd k Δ n − 1, and a permutation π with the property that
the division associated with the barycenter of σ k together with π is envy-free up to an error of ε.

1.3 The Borsuk–Ulam Theorem and Tucker’s Lemma
The Borsuk–Ulam theorem is a classical theorem in algebraic topology, and next to Brouwer’s
theorem, is one of the main results typically proven in an algebraic topology course to show the power
of homological methods. For some historical background on Stan Ulam and the history of the
theorem, I recommend Gian-Carlo Rota’s wonderful article [Rot87]. The Borsuk–Ulam theorem is



 
often illustrated by the claim that at any moment in time, there is a pair of antipodal points on the
surface of the earth with the same air pressure and temperature. We will present four versions of the
theorem, most of which will play some role in the sequel. An illustration of the third version is given
in Fig. 1.10.

Fig. 1.10 A sphere made flat

Theorem 1.6 (Borsuk–Ulam). 
The following statements hold.

1. If  is a continuous antipodal map, i.e., f(−x) = −f(x) for all  , then n ≤ m.  
2. If  is a continuous antipodal map, then there exists an  such that f(x) = 0.  
3. If  is a continuous map, then there exists  such that f(x) = f(−x).  
4. If  is covered by n + 1 subsets S 1 ,…,S n+1 such that each of S 1 ,…,S n is open or closed,

then one of the sets contains an antipodal pair of points, i.e., there exist an i ∈ [n + 1] and
 such that x,−x ∈ S i.

 

Since Brouwer’s fixed-point theorem is intimately related to Sperner’s lemma,the same is true for the
Borsuk–Ulam theorem and a lemma by Tucker. In thesequel, we will present a proof of the Borsuk–
Ulam theorem by means of Tucker’slemma. For a proof using standard methods from algebraic
topology, I recommendBredon [Bre93]. But in order to get used to the different ways the Borsuk–
Ulamtheorem was stated, we will show that each of the four versions easily implies theothers.

Proof (of the equivalences). 
(1 ⇒ 2) Assume  is an antipodal map without zero. Then the map

is (by compactness of ) a continuous antipodal map from  to , contradicting 1.
(2 ⇒ 3) Let  be a continuous map. Consider the continuous and antipodal map 

 defined by g(x) = f(x) − f( − x). By statement 2., g has a zero, x, which yields the desired
property for f.

(3 ⇒ 4) Let  be covered by n + 1 subsets S 1, …, S n + 1, such that each of S 1, …, S n is open or
closed. Assume that none of S 1, …, S n contains an antipodal pair of points. Then x ∈ S i implies dist( 



 
− x, S i ) > 0 for each i ∈ [n] and . We show this by considering separately the cases in which S i
is closed or open. If A = S i is closed and x ∈ A, then − x ∉ A, and therefore dist( − x, A) > 0. If U = S i is
open and x ∈ U, then , and since , we derive 

.
We will now find an antipodal pair of points in S n + 1 as follows. Consider the continuous map

By assumption there exists an  with f(x) = f( − x). We are done if we can show that 
. We check this by showing x, − x ∉ S i for each i ∈ [n]. If 

, then clearly x, − x ∉ S i . If , then x, − x ∉ S i by the discussion above.

(4 ⇒ 1) Assume that there is an antipodal map . Now the important observation is that
the (n − 1)-dimensional sphere can be covered with n + 1 closed sets, none of which contains an
antipodal pair. To see this, consider an n-simplex in  with 0 in the interior. The radial projections X
1, …, X n + 1 of the n + 1 facets of dimension n − 1 to the sphere yield the desired cover, as
demonstrated in Fig. 1.11. Now let S i  = f  − 1(X i ). By continuity of f, the S i are closed, and by the
antipodality of f, they do not contain any antipodal pair of points.

Fig. 1.11 A cover of the (n − 1)-sphere with n + 1 closed sets

For the last implication, note that the family, X 1, …, X n + 1, of open sets 
 for i ∈ [n] and the closed set  would

have worked as well.

Tucker’s Lemma
To formulate Tucker’s lemma we will be interested in subdivisions of the n-dimensional sphere 
that refine the “triangulation” of  by the coordinate hyperplanes. More precisely, we will consider
subdivisions K of the boundary complex Γ n of the cross polytope, which we will introduce now.

The (n + 1)-dimensional cross polytope is defined to be the convex hull 
. Its boundary is the polyhedron of a geometric simplicial complex,

whose simplices are given by the convex hulls of sets , not containing an antipodal



 
pair ± e j . We denote the (geometric) simplicial complex given by this collection of geometric
simplices by

An alternative way to construct Γ n is to take the (n + 1)-fold join of two-point sets, i.e., 0-spheres

where { ± e i } serves as an abbreviation of the geometric complex {∅, + e 1, − e 1}. An illustration
is given in Fig. 1.12.

Fig. 1.12 The cross polytope Q 3

Tucker’s lemma is concerned with antipodally symmetric triangulations K, i.e., triangulations with
the property that σ ∈ K if and only if − σ ∈ K.

Lemma 1.7 (Tucker). 
Let K be an antipodally symmetric subdivision of Γ n , and  an antipodally
symmetric labeling of K, i.e., λ(−v) = −λ(v) for all v. Then there exists a complementary edge, i.e., an
edge uv ∈ K with λ(u) + λ(v) = 0.

Since the triangulation K and the labeling are antipodally symmetric, we can sketch an example by
just showing one side of the boundary of the cross polytope; cf. Fig. 1.13.



 
Fig. 1.13 A front side of a labeled subdivision of Γ 2

Tucker’s lemma is an immediate corollary of the Borsuk–Ulam theorem. The proof of this is the
content of Exercise 8. Conversely, the Borsuk–Ulam theorem may be derived from Tucker’s lemma,
as we show next. Afterwards we will be concerned with a combinatorial proof of Tucker’s lemma that
also finds a complementary edge, in a manner analogous to the combinatorial proof of Sperner’s
lemma. The first such proof, given by Freund and Todd [FT81], even proves that there is always an
odd number of complementary edges. We will present a more recent proof by Prescott and Su, and
moreover give an elegant direct proof for the existence of a complementary edge.

Proof (of the Borsuk–Ulam theorem with the Tucker lemma). 
Since | Γ n  | and  are homeomorphic, we may assume for contradiction that there exists an antipodal
map  without a zero. Hence, there exists an ε > 0 such that , i.e., for each 
there exists a coordinate i with | f i (x) | ≥ ε. By continuity of f, there exists a k such that for all edges uv
of K = sd k Γ n , we have . We construct an antipodally symmetric labeling 

 as follows. Let

and define

Now | f i ( − v) |  =  | − f i (v) |  =  | f i (v) | implies i( − v) = i(v), and hence λ( − v) =  − λ(v). By Tucker’s
lemma, there exists an edge uv in K such that for some i ∈ [n], we have λ(u) =  + i and λ(v) =  − i (after
maybe switching u and v). Hence, by definition of the labeling, f i (u) ≥ ε and f i (v) ≤ − ε, contradicting 

.

1.4 A Generalization of Tucker’s Lemma
As announced, we now turn our attention to combinatorics and consider a generalization of Tucker’s
lemma by Ky Fan [Fan52]. The idea is to decouple the size of the label set from the dimension n. We
will be interested in certain alternatingly labeled simplices. Let K be an antipodally symmetric
subdivision of Γ n and  an antipodally symmetric labeling of K. A d-simplex

σ is called +-alternating, resp. −-alternating, if it has labels { + j 0, − j 1, + j 2, …, ( − 1) d j d }, resp. 
, where 1 ≤ j 0 < j 1 < ⋯ < j d  ≤ m. For an illustration we refer to Fig. 1.14.

Fig. 1.14 A + - and a − -alternating 3-dimensional simplex

Theorem 1.8 (Ky Fan, weak version). 
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