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PREFACE

If calculus is the heart of modern science, then differential equations are its guts.

All physical laws, from the motion of a vibrating string to the orbits of the plan-

ets to Einstein’s field equations, are expressed in terms of differential equations.

Classically, ordinary differential equations described one-dimensional phenom-

ena and partial differential equations described higher-dimensional phenomena.

But, with the modern advent of dynamical systems theory, ordinary differential

equations are now playing a role in the scientific analysis of phenomena in all

dimensions.

Virtually every sophomore science student will take a course in introductory

ordinary differential equations. Such a course is often fleshed out with a brief

look at the Laplace transform, Fourier series, and boundary value problems for

the Laplacian. Thus the student gets to see a little advanced material, and some

higher-dimensional ideas, as well.

As indicated in the first paragraph, differential equations is a lovely venue

for mathematical modeling and the applications of mathematical thinking. Truly

meaningful and profound ideas from physics, engineering, aeronautics, statics,

mechanics, and other parts of physical science are beautifully illustrated with

differential equations.

We propose to write a text on ordinary differential equations that will be mean-

ingful, accessible, and engaging for a student with a basic grounding in calculus

(for example, the student who has studied Calculus Demystified by this author

will be more than ready for Differential Equations Demystified). There will be

many applications, many graphics, a plethora of worked examples, and hun-

dreds of stimulating exercises. The student who completes this book will be

ix
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ready to go on to advanced analytical work in applied mathematics, engineer-

ing, and other fields of mathematical science. It will be a powerful and useful

learning tool.

Steven G. Krantz



 

1
CHAPTER

What Is a
Differential

Equation?

1.1 Introductory Remarks

A differential equation is an equation relating some function f to one or more of

its derivatives. An example is

d2f

dx2
+ 2x

df

dx
+ f 2(x) = sin x. (1)

Observe that this particular equation involves a function f together with its first

and second derivatives. The objective in solving an equation like (1) is to find the

1
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CHAPTER 1 Differential Equations2

function f . Thus we already perceive a fundamental new paradigm: When we

solve an algebraic equation, we seek a number or perhaps a collection of numbers;

but when we solve a differential equation we seek one or more functions.

Many of the laws of nature—in physics, in engineering, in chemistry, in biology,

and in astronomy—find their most natural expression in the language of differential

equations. Put in other words, differential equations are the language of nature.

Applications of differential equations also abound in mathematics itself, especially

in geometry and harmonic analysis and modeling. Differential equations occur in

economics and systems science and other fields of mathematical science.

It is not difficult to perceive why differential equations arise so readily in the

sciences. If y = f (x) is a given function, then the derivative df/dx can be inter-

preted as the rate of change of f with respect to x. In any process of nature, the

variables involved are related to their rates of change by the basic scientific princi-

ples that govern the process—that is, by the laws of nature. When this relationship

is expressed in mathematical notation, the result is usually a differential equation.

Certainly Newton’s Law of Universal Gravitation, Maxwell’s field equations, the

motions of the planets, and the refraction of light are important physical examples

which can be expressed using differential equations. Much of our understanding

of nature comes from our ability to solve differential equations. The purpose of this

book is to introduce you to some of these techniques.

The following example will illustrate some of these ideas. According to Newton’s

second law of motion, the acceleration a of a body of mass m is proportional to

the total force F acting on the body. The standard implementation of this relation-

ship is

F = m · a. (2)

Suppose in particular that we are analyzing a falling body of mass m. Express

the height of the body from the surface of the Earth as y(t) feet at time t . The

only force acting on the body is that due to gravity. If g is the acceleration due

to gravity (about −32 ft/sec2 near the surface of the Earth) then the force exerted

on the body is m · g. And of course the acceleration is d2y/dt2. Thus Newton’s

law (2) becomes

m · g = m ·
d2y

dt2
(3)

or

g =
d2y

dt2
.

We may make the problem a little more interesting by supposing that air exerts

a resisting force proportional to the velocity. If the constant of proportionality is k,



 

CHAPTER 1 Differential Equations 3

then the total force acting on the body is mg − k · (dy/dt). Then the equation (3)

becomes

m · g − k ·
dy

dt
= m ·

d2y

dt2
. (4)

Equations (3) and (4) express the essential attributes of this physical system.

A few additional examples of differential equations are these:

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ p(p + 1)y = 0; (5)

x2 d2y

dx2
+ x

dy

dx
+ (x2 − p2)y = 0; (6)

d2y

dx2
+ xy = 0; (7)

(1 − x2)y′′ − xy′ + p2y = 0; (8)

y′′ − 2xy′ + 2py = 0; (9)

dy

dx
= k · y. (10)

Equations (5)–(9) are called Legendre’s equation, Bessel’s equation, Airy’s

equation, Chebyshev’s equation, and Hermite’s equation respectively. Each has

a vast literature and a history reaching back hundreds of years. We shall touch

on each of these equations later in the book. Equation (10) is the equation of

exponential decay (or of biological growth).

Math Note: A great many of the laws of nature are expressed as second-

order differential equations. This fact is closely linked to Newton’s second law,

which expresses force as mass time acceleration (and acceleration is a second

derivative). But some physical laws are given by higher-order equations. The

Euler–Bernoulli beam equation is fourth-order.

Each of equations (5)–(9) is of second-order, meaning that the highest deriva-

tive that appears is the second. Equation (10) is of first-order, meaning that the

highest derivative that appears is the first. Each equation is an ordinary differen-

tial equation, meaning that it involves a function of a single variable and the

ordinary derivatives (not partial derivatives) of that function.



 

CHAPTER 1 Differential Equations4

1.2 The Nature of Solutions

An ordinary differential equation of order n is an equation involving an unknown

function f together with its derivatives

df

dx
,

d2f

dx2
, . . . ,

dnf

dxn
.

We might, in a more formal manner, express such an equation as

F

(

x, y,
df

dx
,
d2f

dx2
, . . . ,

dnf

dxn

)

= 0.

How do we verify that a given functionf is actually the solution of such an equation?

The answer to this question is best understood in the context of concrete

examples.

e.g. EXAMPLE 1.1

Consider the differential equation

y′′ − 5y′ + 6y = 0.

Without saying how the solutions are actually found, we can at least check that

y1(x) = e2x and y2(x) = e3x are both solutions.

To verify this assertion, we note that

y′′
1 − 5y′

1 + 6y1 = 2 · 2 · e2x − 5 · 2 · e2x + 6 · e2x

= [4 − 10 + 6] · e2x

≡ 0

and

y′′
2 − 5y′

2 + 6y2 = 3 · 3 · e3x − 5 · 3 · e3x + 6 · e3x

= [9 − 15 + 6] · e3x

≡ 0.

This process, of verifying that a function is a solution of the given differential

equation, is most likely entirely new for you. You will want to practice and become

accustomed to it. In the last example, you may check that any function of the form

y(x) = c1e
2x + c2e

3x (1)

(where c1, c2 are arbitrary constants) is also a solution of the differential equation.
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Math Note: This last observation is an instance of the principle of superposition

in physics. Mathematicians refer to the algebraic operation in equation (1) as

“taking a linear combination of solutions” while physicists think of the process

as superimposing forces.

An important obverse consideration is this: When you are going through the

procedure to solve a differential equation, how do you know when you are finished?

The answer is that the solution process is complete when all derivatives have

been eliminated from the equation. For then you will have y expressed in terms of

x (at least implicitly). Thus you will have found the sought-after function.

For a large class of equations that we shall study in detail in the present book, we

will find a number of “independent” solutions equal to the order of the differential

equation. Then we will be able to form a so-called “general solution” by combining

them as in (1). Of course we shall provide all the details of this process in the

development below.

You Try It: Verify that each of the functions y1(x) = ex y2(x) = e2x and

y3(x) = e−4x is a solution of the differential equation

d3y

dx3
+

d2y

dx2
− 10

dy

dx
+ 8y = 0.

More generally, check that y(x) = c1e
x + c2e

2x + c3e
−4x (where c1, c2, c3 are

arbitrary constants) is a “general solution” of the differential equation.

Sometimes the solution of a differential equation will be expressed as an

implicitly defined function. An example is the equation

dy

dx
=

y2

1 − xy
, (2)

which has solution

xy = ln y + c. (3)

Equation (3) represents a solution because all derivatives have been eliminated.

Example 1.2 below contains the details of the verification that (3) is the solution

of (2).

Math Note: It takes some practice to get used to the idea that an implicitly defined

function is still a function. A classic and familiar example is the equation

x2 + y2 = 1. (4)
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y

x

Fig. 1.1.

This relation expresses y as a function of x at most points. Refer to Fig. 1.1.

In fact the equation (4) entails

y = +
√

1 − x2

when y is positive and

y = −
√

1 − x2

when y is negative. It is only at the exceptional points (−1, 0) and (−1, 0),

where the tangent lines are vertical, that y cannot be expressed as a function

of x.

Note here that the hallmark of what we call a solution is that it has no derivatives

in it: it is a straightforward formula, relating y (the dependent variable) to x (the

independent variable).

e.g. EXAMPLE 1.2

To verify that (3) is indeed a solution of (2), let us differentiate:

d

dx
[xy] =

d

dx
[ln y + c],

hence

1 · y + x ·
dy

dx
=

dy/dx

y
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or

dy

dx

[

1

y
− x

]

= y.

In conclusion,

dy

dx
=

y2

1 − xy
,

as desired.

One unifying feature of the two examples that we have now seen of verifying

solutions is this: When we solve an equation of order n, we expect n “independent

solutions” (we shall have to say later just what this word “independent” means)

and we expect n undetermined constants. In the first example, the equation was

of order 2 and the undetermined constants were c1 and c2. In the second example,

the equation was of order 1 and the undetermined constant was c.

You Try It: Verify that the equation x sin y = cos y gives an implicit solution

to the differential equation

dy

dx
[x cot y + 1] = −1.

1.3 Separable Equations

In this section we shall encounter our first general class of equations with the

property that

(i) We can immediately recognize members of this class of equations.

(ii) We have a simple and direct method for (in principle)1 solving such

equations.

This is the class of separable equations.

DEFINITION 1.1

An ordinary differential equation is separable if it is possible, by elementary

algebraic manipulation, to arrange the equation so that all the dependent vari-

ables (usually the y variable) are on one side and all the independent variables

1We throw in this caveat because it can happen, and frequently does happen, that we can write down integrals

that represent solutions of our differential equation, but we are unable to evaluate those integrals. This is annoying,

but we shall later—in Chapter 7—learn numerical techniques that will address such an impasse.
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(usually the x variable) are on the other side. The corresponding solution tech-

nique is called separation of variables.

Let us learn the method by way of some examples.

e.g. EXAMPLE 1.3

Solve the ordinary differential equation

y′ = 2xy.

SOLUTION

In the method of separation of variables—which is a method for first-order

equations only—it is useful to write the derivative using Leibniz notation.

Thus we have

dy

dx
= 2xy.

We rearrange this equation as

dy

y
= 2x dx.

[It should be noted here that we use the shorthand dy to stand for
dy

dx
dx.]

Now we can integrate both sides of the last displayed equation to obtain

∫

dy

y
=

∫

2x dx.

We are fortunate in that both integrals are easily evaluated. We obtain

ln y = x2 + c.

[It is important here that we include the constant of integration. We combine the

constant from the left-hand integral and the constant from the right-hand integral

into a single constant c.] Thus

y = ex2+c.

We may abbreviate ec by D and rewrite this last equation as

y = Dex2

. (1)
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Notice two important features of our final representation for the solution:

(i) We have re-expressed the constant ec as the positive constant D.
(ii) Our solution contains one free constant, as we may have anticipated since

the differential equation is of order 1.

We invite you to verify that the solution in equation (1) actually satisfies the

original differential equation.

e.g.EXAMPLE 1.4

Solve the differential equation

xy′ = (1 − 2x2) tan y.

SOLUTION

We first write the equation in Leibniz notation. Thus

x ·
dy

dx
= (1 − 2x2) tan y.

Separating variables, we find that

cot y dy =

[

1

x
− 2x

]

dx.

Applying the integral to both sides gives
∫

cot y dy =

∫ [

1

x
− 2x

]

dx

or

ln sin y = ln x − x2 + C.

Again note that we were careful to include a constant of integration.

We may express our solution as

sin y = eln x−x2+C

or

sin y = D · x · e−x2

.

The result may be written as

y = sin−1
[

D · x · e−x2
]

.

We invite you to verify that this is indeed a solution to the given differential

equation.
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Math Note: It should be stressed that not all ordinary differential equations are

separable. As an instance, the equation

x2y + y2x = sin(xy)

cannot be separated so that all the x’s are on one side of the equation and all the

y’s on the other side.

☞ You Try It: Use the method of separation of variables to solve the differential

equation

x3y′ = y.

1.4 First-Order Linear Equations

Another class of differential equations that is easily recognized and readily solved

(at least in principle) is that of first-order linear equations.

DEFINITION 1.2

An equation is said to be first-order linear if it has the form

y′ + a(x)y = b(x). (1)

The “first-order” aspect is obvious: only first derivatives appear in the equa-

tion. The “linear” aspect depends on the fact that the left-hand side involves a

differential operator that acts linearly on the space of differentiable functions.

Roughly speaking, a differential equation is linear if y and its derivatives are not

multiplied together, not raised to powers, and do not occur as the arguments

of functions. This is an advanced idea that we shall explicate in detail later. For

now, you should simply accept that an equation of the form (1) is first-order

linear, and that we will soon have a recipe for solving it.

As usual, we explicate the method by proceeding directly to the examples.

e.g. EXAMPLE 1.5

Consider the differential equation

y′ + 2xy = x.

Find a complete solution.
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SOLUTION

This equation is plainly not separable (try it and convince yourself that this is

so). Instead we endeavor to multiply both sides of the equation by some function

that will make each side readily integrable. It turns out that there is a trick that

always works: You multiply both sides by e
∫

a(x) dx .

Like many tricks, this one may seem unmotivated. But let us try it out and

see how it works in practice. Now

∫

a(x) dx =

∫

2x dx = x2.

[At this point we could include a constant of integration, but it is not necessary.]

Thus e
∫

a(x) dx = ex2
. Multiplying both sides of our equation by this factor gives

ex2

· y′ + ex2

· 2xy = ex2

· x

or

[

ex2

· y

]′

= x · ex2

.

It is the last step that is a bit tricky. For a first-order linear equation, it is

guaranteed that if we multiply through by e
∫

a(x) dx then the left-hand side of

the equation will end up being the derivative of [e
∫

a(x) dx · y]. Now of course

we integrate both sides of the equation:

∫ [

ex2

· y

]′

dx =

∫

x · ex2

dx.

We can perform both the integrations: on the left-hand side we simply apply the

fundamental theorem of calculus; on the right-hand side we do the integration.

The result is

ex2

· y =
1

2
· ex2

+ C

or

y =
1

2
+ Ce−x2

.

Observe that, as we usually expect, the solution has one free constant (because

the original differential equation was of order 1). We invite you to check that

this solution actually satisfies the differential equation.
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Math Note: Of course not all ordinary differential equations are first order linear.

The equation

[y′]2 − y = sin x

is indeed first order—because the highest derivative that appears is the first

derivative. But it is nonlinear because the function y′ is multiplied by itself.

The equation

y′′ · y − y′ = ex

is second order and is also nonlinear—because y′′ is multiplied times y.

Summary of the method of first-order
linear equations

To solve a first-order linear equation

y′ + a(x)y = b(x),

multiply both sides of the equation by the “integrating factor” e
∫

a(x) dx and then

integrate.

e.g. EXAMPLE 1.6

Solve the differential equation

x2y′ + xy = x2 · sin x.

SOLUTION

First observe that this equation is not in the standard form (equation (1)) for

first-order linear. We render it so by multiplying through by a factor of 1/x2.

Thus the equation becomes

y′ +
1

x
y = sin x.

Now a(x) = 1/x,
∫

a(x) dx = ln |x|, and e
∫

a(x) dx = |x|. We multiply the

differential equation through by this factor. In fact, in order to simplify the

calculus, we shall restrict attention to x > 0. Thus we may eliminate the absolute

value signs.

Thus

xy′ + y = x · sin x.
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