

Getting Started with Mule Cloud Connect
Accelerating Integration with SaaS, Social Media, and Open APIs

Ryan Carter

Published by O’Reilly Media

Beijing ⋅ Cambridge ⋅ Farnham ⋅ Köln ⋅ Sebastopol ⋅ Tokyo

 Special Upgrade Offer
If you purchased this ebook directly from oreilly.com, you have the following benefits:

DRM-free ebooks—use your ebooks across devices without restrictions or limitations

Multiple formats—use on your laptop, tablet, or phone

Lifetime access, with free updates

Dropbox syncing—your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all
these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.

 Preface
There’s no question that we are undergoing a generational shift in computing. With the massive
adoption of social media, SaaS, and cloud computing, enterprises are relying more and more on
resources beyond the firewall. With this shift, we have seen an explosion in the number of open APIs
that are required to interact with these new services. These APIs are key to unlocking the wealth of
data and functionality out there. But with this comes serious challenges, with the leading one being
integration.

Enterprise application integration (EAI) is a term coined by Gartner, Inc. in 1998 and defined as “the
unrestricted sharing of data and business processes among any connected application or data sources
in the enterprise.” The challenge is no longer to connect the data sources “within” the enterprise, but
instead to connect data sources from a myriad of places, both inside and outside the enterprise.

From Messaging to Connectivity
Typical “Enterprise” message bus and broker implementation’s for integrating on-premise
applications are no longer suitable for these Web 2.0 style APIs. I have worked with many of these
implementations over the years, including Mule since early in version 2, implementing SOA and
message broking solutions and working with technologies and protocols such as SOAP, CORBA, and
JMS. However, with this recent shift, it’s less about messaging and more about just staying connected,
working natively with Web technologies and protocols such as REST, JSON, and OAuth. This is where
Mule differs. As I have adapted to these new technologies, so has Mule. It has grown up with me.
When I need to integrate a new technology or SaaS provider, Mule has gotten there before me and
there’s already a connector for it.

This book aims to introduce you to Mule, and more specifically, Mule Cloud Connect. With step-by-
step instructions to get you to build your own connectors, this book will walk you through working
with some of the most popular APIs from social media to SaaS and show you how to easily get started
with the latest Web API trends including REST, OAuth, and real-time technologies.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements such as
variable or function names, databases, data types, and environment variables.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined by context.

 WARNING
This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code examples, you
may use the code in your programs and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling or distributing a CD-ROM
of examples from O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: “Getting Started with Mule Cloud Connect by Ryan Carter
(O’Reilly). Copyright 2013 Ryan Carter, 978-1-449-33100-9.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

Safari® Books Online

NOTE
Safari Books Online (www.safaribooksonline.com) is an on-demand digital library that delivers expert content in both book and
video form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem solving,
learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organizations,
government agencies, and individuals. Subscribers have access to thousands of books, training videos,
and prepublication manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press,
Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and dozens more. For more information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at http://oreil.ly/mule-cloud.

To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Many people have helped this book happen. Many thanks go to Andy Oram, the editor of the book at
O’Reilly Media, Ross Mason, who helped shape and organize the book, Emiliano Lesende for all the
technical help, all other technical reviewers including David Dossot, Tom Stroobhants, and Victor
Romero, and all the other Mulies in the community.

 Chapter 1. Getting Started
It all starts with a simple API that publishes someone’s status to Facebook, sends a Tweet, or updates a
contact in Salesforce. As you start to integrate more and more of these external services with your
applications, trying to identify the tasks that one might want to perform when you’re surrounded by
SOAP, REST, JSON, XML, GETs, PUTs, POSTs, and DELETEs, can be a real challenge.

Open APIs are all about endpoints. Most services follow the current trend of providing a RESTful
endpoint, others use older RPC-based protocols such as SOAP or XML-RPC, some use newer “real-
time”, push-focused endpoints like WebSockets or HTTP Streaming, others may offer a number of
different endpoints to meet different requirements, and some just use what seems to be best for a
specific job, which might mean not strictly following protocol rules. This is one of the biggest
challenges with open APIs: inconsistency. Figure 1-1 shows the estimated popularity of different
styles of APIs.

Each API is different, with different data formats and authorization mechanisms. One API’s
interpretation of REST may even differ from another. One reason for this is the nature of REST itself.
The RESTful principles come from a paper published by Roy Fielding in 2000 and since then RESTful
services have dominated SOAP-based services on the web year after year. Although REST services
have many advantages over SOAP-based services, the original paper only included a set of constraints
and provides no specification about how to define a RESTful API and handle things like URI schemes,
authentication, error handling, and more.

By observing the vastly different opinions out there, there is no one right way to define a RESTful
API, which has resulted in many inconsistencies, even between APIs from the same service provider.
Top that off with the remaining SOAP services and newer technologies such as HTTP Streaming and
you’re left with a lot of different API styles and protocols to learn. Working with all these APIs can
just be too damn hard, and this is where Mule Cloud Connect comes in. Mule Cloud Connect is a
powerful, lightweight toolset providing a consistent interface to a large number of cloud, SaaS, social
media, and Web 2.0 APIs.

Figure 1-1. Distribution of API protocols

Cloud Connectors versus the REST of the World
There are many different levels of working with APIs. To put Cloud Connectors into context, let’s first
look at some other approaches to integrating APIs.

To demonstrate, we will use the GeoNames API as our external service. I tend to use GeoNames as the
API equivalent of the Northwind database, because it’s easy to consume (providing both XML and
JSON formats) and does not require any account setup for demo purposes.

GeoNames is a worldwide geographical database that contains over 10 million geographical names
and consists of 7.5 million unique features, of which 2.8 million are populated places and 5.5 million
are alternate names. All features are categorized into one out of nine feature classes and further
subcategorized into one out of 645 feature codes. In addition to listing names of places in various
languages, data stored by GeoNames includes latitude, longitude, elevation, population, administrative
subdivision, and postal codes. GeoNames features include direct and reverse geocoding, finding places
through postal codes, finding places next to a given place, and finding Wikipedia articles about
neighboring places.

Transport-Specific Clients
Transport-specific clients deal directly with APIs over the wire. These clients deal with the actual
bytes that pass between your application and the external API. For a RESTful service, it requires you

to build a URL and associate it with the correct URI parameters and HTTP headers. For a SOAP-based
service, it requires you to build the contents of the HTTP POST yourself, including the
SOAP:Envelope and any WS-* content. Example 1-1 shows a very simple Java snippet for constructing
a simple client for a RESTful service using Java’s HTTP packages.

Example 1-1. RESTful Java client with java.net URL
URL url = new URL("http://api.geonames.org/findNearbyJSON" +
 "?lat=37.51&lng=-122.18&username=demo");
HttpURLConnection conn = (HttpURLConnection) url.openConnection();
conn.setRequestMethod("GET");
conn.setRequestProperty("Accept", "application/json");

if (conn.getResponseCode() != 200) { throw new RuntimeException("Failed :
 HTTP error code : " + conn.getResponseCode());
}
BufferedReader br = new BufferedReader(new InputStreamReader(
 (conn.getInputStream())));

String output;
System.out.println("Output from Server \n");
while ((output = br.readLine()) != null) { System.out.println(output);
}

conn.disconnect();

This is the most abstract way of working with APIs. The semantics of HTTP libraries match the HTTP
protocol and not REST or SOAP APIs specifically. This leaves it up to you to construct URLs, build
up request structures, and write them to and from input and output streams, requiring you to know the
API very well.

When you start working with more complex APIs that require connection or state management, you’re
left to do this manually, which is error prone and requires far more effort to handle reliably.

Language-Specific Clients
Language-specific libraries, such as Jersey clients for Rest APIs or Apache CXF for SOAP APIs, wrap
the underlying protocols in methods that are more familiar and comfortable for programmers in that
language. For example, Example 1-2 shows a very simple code snippet for using Jersey to invoke
RESTful service.

Example 1-2. Jersey REST client
WebResource webResource = client.resource("http://api.geonames.org/findNearbyJSON");
MultivaluedMap queryParams = new MultivaluedMapImpl();
queryParams.add("lat", "lat");
queryParams.add("lng", "-122.18");
queryParams.add("username", "demo");
String s = webResource.queryParams(queryParams).get(String.class);

Using this example, the Jersey client libraries abstract away a lot of the HTTP specifics and make API
clients a lot clearer by providing short code that helps express the semantics of the particular API
protocol. This is one advantage over using transports, but you’re still left importing WSDLs for SOAP
services and object binding to and from request structures. If you’re using multiple protocols, you may
have to learn and maintain multiple libraries. Because they are generic and not specific to any
particular API, you will still have to write custom code to work with each API’s little idiosyncrasies or

custom features such as session-based authentication and OAuth.

Service-Specific Client Libraries
A client library specifically developed for a particular API, such as Twitter4j for the Twitter APIs,
makes things easier by extracting away a lot of the protocol and transport specifics. Example 1-3
shows an example of working with GeoNames’ Java library.

Example 1-3. Service-specific client library
WebService.setUserName("demo");
ToponymSearchCriteria searchCriteria = new ToponymSearchCriteria();
searchCriteria.setQ("zurich");
ToponymSearchResult searchResult = WebService.search(searchCriteria);
for (Toponym toponym : searchResult.getToponyms()) {
 System.out.println(toponym.getName()+" "+ toponym.getCountryName());
}

Convenient as these are, because they fit the semantics of the service closely, they are typically
developed by the individual service providers or developer communities. Therefore, there is no
consistency between implementations.

Cloud Connectors
Mule Cloud Connect offers a more maintainable way to work with APIs. Built on top of the Mule and
CloudHub integration platforms, Cloud Connectors are service-specific clients that abstract away the
complexities of transports and protocols. Many complex but common processes such as authorization
and session management work without you having to write a single line of code. Although service-
specific, Cloud Connectors all share a common and consistent interface to configure typical API tasks
such as OAuth, WebHooks, and connection management. They remove the pain from working with
multiple, individual client libraries. Example 1-4 shows a really basic example of configuring a Cloud
Connector to access the GeoNames API, which will be covered in more detail shortly.

Example 1-4. Cloud Connector configuration
<geonames:config username="demo" />

<geonames:find-nearby-pois-osm latitude="37.451"
 longitude="-127" />

Cloud Connectors are essentially plain old Java objects (POJOs) developed by Mule and the
community using the Cloud Connect SDK called the DevKit. The DevKit is the successor to the
original Cloud Connect SDK, which was developed with just external APIs in mind but has since been
opened up to create any manner of Mule extension such as transformers or pretty much anything. The
DevKit uses annotations that mimic typical integration tasks to simplify development, and when
processed, are converted into fully featured components for the Mule ESB and CloudHub integration
platforms.

Mule Cloud Connect supports many of the most widely-used open APIs from SaaS to social media,
with more being developed every day. Current Connectors include Twitter, Facebook, LinkedIn,
Salesforce, Amazon WebServices, Twillio, and many more. A full categorized list of available
connectors and what they offer can be found here.

 Mule: A Primer
Before diving straight into configuring Cloud Connectors, it’s important to understand some basic
concepts. After this short overview, you’ll be ready to build your first application and start taking
advantage of Mule Cloud Connectors. To begin, we will first build a simple Mule application that we
can use as the base of our examples and introduce some core concepts for those unfamiliar with Mule.

As mentioned previously, Mule is an integration platform that allows developers to connect
applications together quickly and easily, enabling them to exchange data regardless of the different
technologies that the applications use. It is also at the core of CloudHub, an Integration Platform as a
Service (IPaaS). CloudHub allows you to integrate cross-cloud services, create new APIs on top of
existing data sources, and integrate on-premise applications with cloud services.

Later in the book we will look at specific connectors, but to start let’s take a look at a simple API
proxy that can be used to mediate an external service and introduce some transformation and some
routing between the two. This application will expose a simple RESTful interface that can be invoked
through a browser or HTTP client, contact an external service, and transform the returned response to
the browser.

Mule Configuration
XML is the format for the files that control Mule, and it uses schemas and namespaces to provide a
dynamic schema language (DSL) authoring environment. Example 1-5 shows the finished application.

Example 1-5. Simple Mule API proxy application
<?xml version="1.0" encoding="UTF-8"?>
<mule xmlns="http://www.mulesoft.org/schema/mule/core"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:spring="http://www.springframework.org/schema/beans"
 xmlns:http="http://www.mulesoft.org/schema/mule/http"
 xsi:schemaLocation="
 http://www.mulesoft.org/schema/mule/core
 http://www.mulesoft.org/schema/mule/core/current/mule.xsd
 http://www.mulesoft.org/schema/mule/http
 http://www.mulesoft.org/schema/mule/http/current/mule-http.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <flow name="main">
 <http::inbound-endpoint host="localhost" port="8080" path="geonamesproxy"
 exchange-pattern="request-response" />

 <!--
 TODO add your service component here. This can also be a Spring bean
 using <spring-object bean="name"/>
 -->

 <echo-component />

 <http:outbound-endpoint
 address="http://api.geonames.org/findNearbyPOIsOSM?lat=37.451
 &lng=-122.18&username=demo" method="GET" />
 </flow>
</mule>

Inspecting this configuration, we can see that it is an XML document with a root element of mule.

This element is the key element and must always be included. It is this element that contains
references to specific Mule modules, via schema and namespace declarations, to provide the DSL
authoring environment. The most important of these is the core namespace,
xmlns="http://www.mulesoft.org/schema/mule/core", which allows you to use all the Mule core
components such as flows, routers, transformers, and filters. The core namespace is then followed by
subsequent namespace declarations that represent individual Mule modules, such as the HTTP module
represented by xmlns:http="http://www.mulesoft.org/schema/mule/http" and the Spring
module represented by xmlns:spring="http://www.springframework.org/schema/beans".

Flows
Within the mule root element is a critical child element: flow. Flows are underlying configurations
for your Mule or CloudHub integration and are the default constructs for orchestrating message
processing. Each flow has a name attribute, which must be a unique identifier within your
configuration. The flow then consists of a message source followed by a sequence of message
processors. Flows are executed from top to bottom, just like any imperative programming language.
Example 1-6 shows the flow we have created with the unique ID: main.

Example 1-6. A Mule flow
<flow name="main">
 <http::inbound-endpoint host="localhost" port="8080"
 path="geonamesproxy" exchange-pattern="request-response" />

 <!--
 TODO add your service component here. This can also be a Spring bean
 using <spring-object bean="name"/>
 -->

 <echo-component />

 <http:outbound-endpoint
 address="http://api.geonames.org/findNearbyPOIsOSM?lat=37.451
 &lng=-122.18&username=demo" method="GET" />
</flow>

Message Sources
A message source appears at the beginning of a flow. It receives or generates messages and forwards
them on to a set of message processors to start working with the message. The message source is
typically an inbound endpoint, such as HTTP or JMS, which can listen or poll on a certain address.
The flow in the previous example has an HTTP message source for listening on a specific HTTP port,
as shown in Example 1-7.

Example 1-7. HTTP message source
<http:inbound-endpoint host="localhost" port="8080"
 path="geonamesproxy" exchange-pattern="request-response" />

In this case, we have added a host attribute with the value localhost, a port attribute with the value
8080, and a path attribute with the value geonamesproxy. This flow, when run, will create a web
server that will listen on http://localhost:8080/geonamesproxy.

Message Processors

 Message Processors
With the message source in place, we now need some message processors to actually do something
with the received message. A message processor is used by Mule to process any messages received by
a message source. Each processor can be a transformer, a Java component, or an outbound endpoint to
forward on the message to an external system or to another flow.

In this case, we want to forward the message on to the GeoNames API. The GeoNames API is a simple
HTTP RESTful API, so we can create an HTTP outbound endpoint similar to that of our message
source to forward on the message:

<http:outbound-endpoint
 address="http://api.geonames.org/findNearbyPOIsOSM?lat=37.451
 &lng=-122.18&username=demo" method="GET" />

As you can see, this is very similar to the message source, with the most noticeable difference being
that we have changed the element name from -inbound-endpoint to -outbound-endpoint. In this
element we have then specified an address attribute with the value of one of the GeoNames APIs and
some hard-coded query parameters:

http://api.geonames.org/findNearbyPOIsOSM?lat=37.451&lng=-122.18&username=demo

The GeoNames API also requires the GET HTTP method, so we have included the method attribute on
the endpoint and set its value to GET.

Variables and Expressions
To support the work of message processors, Mule provides the Mule Expression Language (MEL) to
access, manipulate, and consume information from the message and its environment. Mule makes this
data available via the following four contexts:

Server

The operating system on which the message processor is running

Mule

The Mule instance on which the application is running

Application

The user application within which the current flow is deployed

Message

The package (payload, attachments, properties) that the message processor is processing

These contexts are at the heart of most MEL expressions. A typical MEL expression combines one of
these contexts with one or more operands and zero or more operators in a Java-like syntax and returns
the resulting value. For example, to access the payload of the message, we can use the expression #
[message.payload], where message represents the message context and payload represents the
payload property within the specified context. The syntax consists of a preceding #[followed by the
expression to execute and a terminating] character.

In most cases, MEL expressions work within message processors to modify the way those processors
do their main jobs, such as routing and filtering based on the message content. The following sections
will focus on using the message context and cover some of the main use-cases that will be used
throughout the book.

Message properties
Aside from the payload of the message, which is typically the main body of a message, message
processors such as inbound and outbound endpoints add additional headers to a message called
message properties. Message properties are defined within the following two scopes:

Inbound properties

Inbound properties are placed on a message receiving a request on an inbound endpoint or a
response from an outbound endpoint. For example, if a message to an inbound endpoint is called
via HTTP with a Content-Type header, this property will be placed as a property within the
inbound scope.

Outbound properties

Outbound properties are set on a message to be sent via an outbound endpoint. For example, if a
message with an outbound property Content-Type is sent via HTTP, the Content-Type property
will be placed as an HTTP header on the outbound message.

MEL expressions allow you to refer to these message properties via a java.util.Map interface. For
each property scope, Mule associates a map containing each property with the current message. You
can refer to these maps using the following syntax:

#[message.inboundProperties['someProperty']]
#[message.outboundProperties['someProperty']]

where inboundProperties and outboundProperties are the maps within the message context and
someProperty is they key of the property you want to retrieve from the map. Example 1-8 amends our
GeoNames example to extract the latitude query parameter from the incoming request to use as an
input to the original GeoNames request URL.

Example 1-8. Using message properties
<flow name="main">
 <http::inbound-endpoint host="localhost" port="8080"
 path="geonamesproxy" exchange-pattern="request-response" />

 <!--
 TODO add your service component here. This can also be a Spring bean
 using <spring-object bean="name"/>
 -->

 <echo-component />

 <http:outbound-endpoint
 address="http://api.geonames.org/findNearbyPOIsOSM
 ?lat=#[message.inboundProperties['latitude']]
 &lng=-122.18&username=demo" method="GET" />
</flow>

With the amended configuration in place, if you execute the flow with your browser using the URL

http://localhost:8080/geonamesproxy?latitude=37.451, Mule will now propagate the latitude
parameter to the lat argument in the GeoNames request URL.

Additional variables
Typically, message properties should be reserved for the Mule message for things such as HTTP
headers or JMS headers. To store additional information during the execution of a flow, like variables
in Java, Mule provides two more types of scoped variables:

Flow variables

Flow variables are global to the current flow. They retain their values as control passes from one
message processor to another. Thus, you can set them in one message processor and use them in
another.

Session variables

Session variables are essentially the same as flow variables, but in addition, when one flow calls
another one via a Mule endpoint, they are propagated and are available in the subsequent flow.

As with message properties, flow and session variables are available via a java.util.Map interface.
This map data can be referenced using the following syntax:

#[flowVars['someProperty']]
#[sessionVars['someProperty']]

Storing variable data
In order to store variable data, Mule provides a set of message processors to simplify working with
each property or variable scope.

Setting properties
To set a message property, Mule provides the set-property message processor. This message
property works only with outbound scoped properties as the inbound scoped properties are immutable.
The following example shows how to set the Content-Type property on a message using this message
processor:

<set-property propertyName="Content-Type" value="text/plain"/>

This message processor takes two mandatory arguments: propertyName and value. propertyName is
the name of the property to set and value is the value of the property. Either of these arguments’
values can also be expressions themselves. For example, to copy the Content-Type property from the
inbound scope to the outbound scope, you could use the following example:

<set-property propertyName="Content-Type"
 value="#[message.inboundProperties['Content-Type']]"/>

Setting variables
As with properties, similar message processors are available for both flow and session variables. set-
variable sets a flow variable and set-session-variable sets a session variable. The syntax for
these message processors are very similar as the previous set-property message processor, with
variableName being the name of the variable to set and value being the value of the variable. The

following example demonstrates setting both flow and session variables:

<set-variable variableName="myFlowVariable" value="some data"/>

<set-session-variable variableName="mySessionVariable" value="some data"/>

Enrichment
Another way of setting message properties or variables is via enrichment. Mule provides an enricher
element to enrich the current message with extra information. It allows you to call out to another
resource and set extra information on the message without overriding the current payload of the
message. For example, you can call out to another endpoint or message processor and store its return
value in a message property or variable. The following example demonstrates this effect, using the
enricher to call the GeoNames service and store the response in a message property:

<flow name="main">
 <http::inbound-endpoint host="localhost" port="8080"
 path="geonamesproxy" exchange-pattern="request-response" />

 <enricher target="#[message.outboundProperties['response']]">
 <http:outbound-endpoint
 address="http://api.geonames.org/findNearbyPOIsOSM
 ?lat=#[message.inboundProperties['latitude']]
 &lng=-122.18&username=demo" method="GET" />
 </enricher>
</flow>

The target attribute defines how the current message is enriched by using expressions to define
where the value is stored on the message. Here we are using standard MEL syntax to refer to an
outbound property using #[message.outboundProperties['response']. This will add or overwrite
the specified message property with the result of the outbound endpoint. The main difference between
using the enricher and the set-property message processor is that the enricher supports setting the
value of the property via a nested message processor such as an outbound endpoint, whereas the set-
property and other associated message processors only support setting the value’s value attribute.
This just demonstrates the broad strokes of the procedure. More information on enrichment can be
found here.

Functions
In addition to getting or setting information within a specific context, Mule also provides an
expression syntax for executing certain functions. Functions provide a way of extracting information
that doesn’t already exist as a single value within a particular context. For example, if you have an
XML document and care only about a particular node or value within that document, you can use the
xpath function to extract that particular value. Or if you want extract a specific part of a string, you
can use the regex function, and so on.

NOTE
Xpath is a closely related sister specification of the XML document specification and provides a declarative query language for
addressing parts of an XML document.

Our current configuration will return an XML-formatted document representing the GeoNames
response. Example 1-9 demonstrates using a simple xpath expression to log the name of the root
element.

Example 1-9. Using functions
<flow name="main">
 <http::inbound-endpoint host="localhost" port="8080"
 path="geonamesproxy" exchange-pattern="request-response" />

 <!--
 TODO add your service component here. This can also be a Spring bean
 using <spring-object bean="name"/>
 -->

 <echo-component />

 <http:outbound-endpoint
 address="http://api.geonames.org/findNearbyPOIsOSM
 ?lat=#[message.inboundProperties['latitude']]
 &lng=-122.18&username=demo" method="GET" />

 <logger level="INFO" message="#[xpath('local-name(/*)')]" />
</flow>

Routing
Mule has always had support for many routing options. Routers in Mule implement the Enterprise
Integration Patterns (EIP). They are message processors that determine how messages are directed
within a flow. Some of the most common routers are:

all

Sends the message to each endpoint

choice

Sends the message to the first endpoint that matches

recipient-list

Sends the message to all endpoints in the expression evaluated with the given evaluator

round-robin

Each message received by the router is sent to alternating endpoints.

wire-tap

Sends a copy of the message to the supplied endpoint, then passes the original message to the next
processor in the chain

first-successful

Sends the message to the first endpoint that doesn’t throw an exception

splitter

Splits the current message into parts using a MEL expression, or just splits elements of a list

aggregator

Combines related messages into a message collection

Alongside MEL, routers can decide on a course of action based on the contents, properties, or context
of a message. Example 1-10 demonstrates using the choice router. It builds upon Example 1-8 to call
the GeoNames API only if the latitude property is sent in the request.

Example 1-10. Choice router with expressions
<flow name="main">
 <http::inbound-endpoint host="localhost" port="8080"
 path="geonamesproxy" exchange-pattern="request-response" />

 <!--
 TODO add your service component here. This can also be a Spring bean
 using <spring-object bean="name"/>
 -->

 <echo-component />

 <choice>
 <when expression="#[message.inboundProperties['latitude']] != null]">
 <http:outbound-endpoint
 address="http://api.geonames.org/findNearbyPOIsOSM
 ?lat=#[message.inboundProperties['latitude']]
 &lng=-122.18&username=demo" method="GET" />
 </when>
 </choice>
</flow>

Summary
This chapter has offered a primer on Mule. You have been introduced to some its core features, started
your first working Mule application, and connected your first API. But you have merely scratched the
surface of Mule, and there are many more features for you to explore. But you’re now ready to delve
into Mule Cloud Connect.

 Chapter 2. Cloud Connectors
As with transports, Cloud Connectors can process messages, communicate with a remote system, and
be configured as part of a Mule flow. They can take full advantage of Mule’s DSL authoring
environment for autocompletion in your favorite IDE or XML editor, offering context-sensitive
documentation and access to lists of default and valid values. The main purpose of Mule Cloud
Connect is to provide you with an easy way to connect to the thousands of open APIs out there without
having to work with transports or dealing with the different protocols that each API uses. Over the
following sections we will start to replace transports with Cloud Connectors and discuss in detail how
to get up and running with some of the most popular APIs.

Installing Cloud Connectors
To get started with Mule Cloud Connect, you will first need to download the connector you want to
use. Most Mule modules, such as the HTTP module we used earlier, are prepackaged with Mule and
do not require downloading, but you’ll have to download and install the Cloud Connectors yourself.
Each connector and its associated documentation is available at MuleForge, but the steps to download
a connector differ slightly depending on your development environment. The following sections detail
the most common approaches.

Maven
If you use Apache Maven to build your Mule projects, you can install Cloud Connectors by adding
dependency entries for each connector you will be using to your Maven pom.xml file. Each
connector’s documentation page provides you with Maven dependency XML snippets that you can
simply copy and paste. To install a connector via Maven, you first need to add the Mule repository to
your Maven pom.xml file, as shown in Example 2-1.

Example 2-1. Mule repository configuration
<repositories>
 <repository>
 <id>mulesoft-releases</id>
 <name>MuleSoft Releases Repository</name>
 <url>http://repository.mulesoft.org/releases/</url>
 <layout>default</layout>
 </repsitory>
</repositories>

Once the repository is defined, add a dependency for each connector you want to use—in Example 2-
2, it’s GeoNames.

Example 2-2. Connector dependency configuration
<dependency>
 <groupId>org.mule.modules</groupId>
 <artifactId>mule-module-geonames</artifactId>
 <version>1.0</version>
</dependency>

With your configuration in place, recompiling will download the required connector and its

dependencies. After downloading finishes, the connector will be available to your Mule application.

Update Sites
If you are using MuleStudio, you can take advantage of the Cloud Connector’s Update site, shown in
Figure 2-1.

Use the Update site as follows:

1. Click Help → Install New Software on the Mule menu bar.

2. After the Install window opens, click Add, which is located to the right of the Work with field.

3. Enter the unique name of choice for the update site in the Name field (for example, “Connector
Updates”).

4. In the Location field, enter http://repository.mulesoft.org/connectors/releases, which
points to the Cloud Connector Update site.

5. A table will appear displaying the available connectors under community and standard
categories, the newest version, and the connector name.

6. Click the available version, then click Next, and finally click Finish. The connector will now be
available to import into your project.

Figure 2-1. MuleStudio Update site

After following the onscreen instructions, you will be asked to restart your IDE. After that completes,
the connector will be available to all your Mule applications.

 Manual Installation
If you’re not using Maven or Update sites, another option is to download the connector and directly
add it to the build path of your project. Each connector hosted on MuleForge has a download link that
will provide you with the connector of choice as a JAR file.

WARNING
Be careful when using this method for installing connectors, as there is no automatic dependency management. If the connector
library is reliant on other libraries, which the majority are, you will have to manually add them yourself, which can be time-
consuming and error-prone.

If you are using Mule Studio, you can add the connector JAR file and other dependencies to a
particular project as follows:

1. Create a src/main/app/lib directory in your Studio project.

2. Copy the downloaded JAR file to the src/main/app/lib directory.

3. Right click, or select your project and navigate to Project → Properties from the respective
menu.

4. Choose Java Build Path from the left-hand menu and then click the Libraries tab in the
subsequent view.

5. Click Add JARs..., then use the directory view to navigate through your project and select the
JAR files in the src/main/app/lib directory.

6. Click OK on the resulting screens to save the changes and go back to your project.

Alternatively, if you’re using a stand-alone Mule instance, you can then drop the downloaded
connector JAR file into the lib/user directory of your Mule distribution.

Namespace and Schema Declarations
The programming model for Mule is XML, and it uses schemas and namespaces to provide a DSL
authoring environment. To utilize a connector from a Mule project, you must first include the
namespace and schema location declarations within your Mule configuration files.

Each connector’s documentation page will provide you with namespace and schema snippets that you
can simply copy and paste. Example 2-3 demonstrates the configuration for the namespace and
schema locations for the GeoNames connector.

Example 2-3. Connector namespace declarations
<?xml version="1.0" encoding="UTF-8"?>
<mule xmlns="http://www.mulesoft.org/schema/mule/core"
 xmlns:http="http://www.mulesoft.org/schema/mule/http"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:geonames="http://www.mulesoft.org/schema/mule/geonames"
 xsi:schemaLocation="
 http://www.mulesoft.org/schema/mule/core
 http://www.mulesoft.org/schema/mule/core/current/mule.xsd
 http://www.mulesoft.org/schema/mule/http

 http://www.mulesoft.org/schema/mule/http/current/mule-http.xsd
 http://www.mulesoft.org/schema/mule/geonames
 http://www.mulesoft.org/schema/mule/geonames/current/mule-geonames.xsd">
</mule>

Global Configuration
After the namespace and schema locations are defined, every Cloud Connector must define a config
element. This element is used for setting global service properties such as credentials, security tokens,
and API keys. This configuration then applies to all the operations supported by the connector, and
once defined, cannot be overridden within a flow.

Each connector’s config element provides a name attribute, which adds an identifier to each
configuration so it can be referenced from each connector operation to let Mule know which service
configuration to use. Other attributes then differ between each connector. In this case, the GeoNames
connector requires that you configure the username attribute that maps to the username parameter of
the service:

<?xml version="1.0" encoding="UTF-8"?>
<mule xmlns="http://www.mulesoft.org/schema/mule/core"
 xmlns:http="http://www.mulesoft.org/schema/mule/http"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:geonames="http://www.mulesoft.org/schema/mule/geonames"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.mulesoft.org/schema/mule/core
 http://www.mulesoft.org/schema/mule/core/current/mule.xsd
 http://www.mulesoft.org/schema/mule/http
 http://www.mulesoft.org/schema/mule/http/current/mule-http.xsd
 http://www.mulesoft.org/schema/mule/geonames
 http://www.mulesoft.org/schema/mule/geonames/current/mule-geonames.xsd">

 <geonames:config username="demo" />

 <flow name="main">
 ...
 </flow>

</mule>

As you can see here, we are defining the config element within our mule configuration, but outside of
any flow.

Multiple Connector Configurations
Each global config element has a name attribute and each connector operation has a corresponding
config-ref attribute that associates the operation with the specific configuration to use. If only one
config element per connector is present within your app, it is not necessary to explicitly reference a
specific configuration, as Mule will default to the only one available. However, if you have multiple
configurations per connector, you must explicitly reference the configuration via the config-ref
attribute on each connector operation.

As you can see from Example 2-4, we have two GeoNames connector configurations. Each of them
has a unique name attribute that adds an identifier to each configuration. Underneath the covers, Mule

will instantiate two copies of your connector and register them within its registry with the name
supplied.

Example 2-4. Referencing connector configurations
<?xml version="1.0" encoding="UTF-8"?>
<mule xmlns="http://www.mulesoft.org/schema/mule/core"
 xmlns:http="http://www.mulesoft.org/schema/mule/http"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:geonames="http://www.mulesoft.org/schema/mule/geonames"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.mulesoft.org/schema/mule/core
 http://www.mulesoft.org/schema/mule/core/current/mule.xsd
 http://www.mulesoft.org/schema/mule/http
 http://www.mulesoft.org/schema/mule/http/current/mule-http.xsd
 http://www.mulesoft.org/schema/mule/geonames
 http://www.mulesoft.org/schema/mule/geonames/current/mule-geonames.xsd">

 <geonames:config username="demo" name="config1" />

 <geonames:config username="anotherUser" name="config2" />

 <flow name="main">
 <geonames:find-nearby-pois-osm
 latitude="37.451"
 longitude="-122.18"
 config-ref="config1" />

 <geonames:find-nearby-pois-osm
 latitude="37.451"
 longitude="-122.18"
 config-ref="config2" />
 </flow>

</mule>

Operations are then defined as usual, with the difference that each operation has an attached config-
ref attribute that will signal the configuration to use it for that particular operation.

Connector Operations
Connector operations wrap up connectivity to external systems or some logic into a simple call that an
application can make within its flow. Each operation typically represents a particular API or function
that the service provides. Connector operations can be used anywhere in a flow and can be used in a
similar way to transports to invoke a remote service:

<geonames:find-nearby-pois-osm ... />

Each operation is composed of the namespace we previously bound for the connector (geonames:) and
the operation name (in this case, find-nearby-pois-osm). All available operations for a connector
are accessible via content assist in your IDE or via the connector’s documentation.

Simple Arguments
Instead of using URL query and path parameters, any basic arguments to the API are represented as
attributes on the operation that map message payload and properties directly to API arguments.

Attributes can be optional or mandatory and can provide content assisted values for enumerations and
default values for properties that are not specified.

The following example uses the find-nearby-pois-osm operation, which represents the GeoNames
Find Nearby Points of Interest API, to find the nearest points of interests for a given lat/lng pair:

<geonames:find-nearby-pois-osm latitude="37.451" longitude="-127" />

The operation accepts multiple arguments, some required and some optional. The first required
arguments, latitude and longitude, are basic java.lang.String parameters that represent the
specific coordinates.

Most simple arguments are represented as a java.lang.String type, but some arguments that require
more specific types, such as java.util.Date, need to be constructed as the specific type. Using
java.util.Date as an example, you may be inclined to configure a date argument as follows, which
would lead to an error:

<someconnector:operation date="1984-06-03" />

This configuration would pass the date to the connector as a String, when the connector needs a
java.util.Date type. The correct way to map the date value to the argument is to generate a
java.util.Date object. One convenient way is to use the groovy expression evaluator, like so:

<someconnector:operation
 date="#[groovy:Date.parse("yyyy-MM-dd", "1984-06-03")]" />

The same also goes for boolean values. If you need to pass in a boolean value, construct it as the
correct type using a groovy expression again:

<someconnector:operation true-or-false="#[groovy:true]" />

Information on each argument’s type can be found at the connector’s documentation page online and
also as part of content assist. Connectors and the DevKit have support for the following types:

int

float

long

byte

short

double

boolean

char

java.lang.Integer

java.lang.Float

java.lang.Long

java.lang.Byte

java.lang.Short

sample content of Getting Started with Mule Cloud Connect: Accelerating Integration with SaaS,
Social Media, and Open APIs

Night Terrors: The Ghost Stories of E. F. Benson pdf, azw (kindle), epub, doc, mobi
Elementary Differential Geometry (2nd Edition) (Springer Undergraduate Mathematics Series)
here
download What's Wrong with Homosexuality? (Philosophy in Action) pdf
download online Plant by Numbers: 50 Houseplant Combinations to Decorate Your Space for
free
How to Prove It: A Structured Approach (2nd Edition) book
read online The Vampire Diaries - Stefan's Diaries (Schatten des Schicksals, Band 5) pdf,
azw (kindle)

http://toko-gumilar.com/books/Night-Terrors--The-Ghost-Stories-of-E--F--Benson.pdf
http://hasanetmekci.com/ebooks/Elementary-Differential-Geometry--2nd-Edition---Springer-
Undergraduate-Mathematics-Series-.pdf
http://omarnajmi.com/library/Capital--A-Critique-of-Political-Economy--Volume-3.pdf
http://metromekanik.com/ebooks/The-Write-Ingredients.pdf
http://studystrategically.com/freebooks/How-to-Prove-It--A-Structured-Approach--2nd-
Edition-.pdf
http://test1.batsinbelfries.com/ebooks/Selected-Poems.pdf

Powered by TCPDF (www.tcpdf.org)

http://toko-gumilar.com/books/Night-Terrors--The-Ghost-Stories-of-E--F--Benson.pdf
http://hasanetmekci.com/ebooks/Elementary-Differential-Geometry--2nd-Edition---Springer-Undergraduate-Mathematics-Series-.pdf
http://hasanetmekci.com/ebooks/Elementary-Differential-Geometry--2nd-Edition---Springer-Undergraduate-Mathematics-Series-.pdf
http://omarnajmi.com/library/Capital--A-Critique-of-Political-Economy--Volume-3.pdf
http://metromekanik.com/ebooks/The-Write-Ingredients.pdf
http://metromekanik.com/ebooks/The-Write-Ingredients.pdf
http://studystrategically.com/freebooks/How-to-Prove-It--A-Structured-Approach--2nd-Edition-.pdf
http://test1.batsinbelfries.com/ebooks/Selected-Poems.pdf
http://test1.batsinbelfries.com/ebooks/Selected-Poems.pdf
http://toko-gumilar.com/books/Night-Terrors--The-Ghost-Stories-of-E--F--Benson.pdf
http://hasanetmekci.com/ebooks/Elementary-Differential-Geometry--2nd-Edition---Springer-Undergraduate-Mathematics-Series-.pdf
http://hasanetmekci.com/ebooks/Elementary-Differential-Geometry--2nd-Edition---Springer-Undergraduate-Mathematics-Series-.pdf
http://omarnajmi.com/library/Capital--A-Critique-of-Political-Economy--Volume-3.pdf
http://metromekanik.com/ebooks/The-Write-Ingredients.pdf
http://studystrategically.com/freebooks/How-to-Prove-It--A-Structured-Approach--2nd-Edition-.pdf
http://studystrategically.com/freebooks/How-to-Prove-It--A-Structured-Approach--2nd-Edition-.pdf
http://test1.batsinbelfries.com/ebooks/Selected-Poems.pdf
http://www.tcpdf.org

