

Undergraduate Topics in Computer Science

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional content for un-
dergraduates studying in all areas of computing and information science. From core foundational and
theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and mod-
ern approach and are ideal for self-study or for a one- or two-semester course. The texts are all authored
by established experts in their fields, reviewed by an international advisory board, and contain numer-
ous examples and problems. Many include fully worked solutions.

For further volumes:
www.springer.com/series/7592

Torben Ægidius Mogensen

Introduction
to Compiler Design

Torben Ægidius Mogensen
Department of Computer Science
University of Copenhagen
Copenhagen, Denmark
torbenm@diku.dk
url: http://www.diku.dk/~torbenm

Series editor
Ian Mackie

Advisory board
Samson Abramsky, University of Oxford, Oxford, UK
Chris Hankin, Imperial College London, London, UK
Dexter Kozen, Cornell University, Ithaca, USA
Andrew Pitts, University of Cambridge, Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Lungby, Denmark
Steven Skiena, Stony Brook University, Stony Brooks, USA
Iain Stewart, University of Durham, Durham, UK

ISSN 1863-7310
ISBN 978-0-85729-828-7 e-ISBN 978-0-85729-829-4
DOI 10.1007/978-0-85729-829-4
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2011933601

© Springer-Verlag London Limited 2011
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: VTeX UAB, Lithuania

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

“Language is a process of free creation; its laws and principles
are fixed, but the manner in which the principles of generation
are used is free and infinitely varied. Even the interpretation and
use of words involves a process of free creation.”
Noam Chomsky (1928–)

In order to reduce the complexity of designing and building computers, nearly all
of these are made to execute relatively simple commands (but do so very quickly).
A program for a computer must be built by combining these very simple commands
into a program in what is called machine language. Since this is a tedious and error-
prone process most programming is, instead, done using a high-level programming
language. This language can be very different from the machine language that the
computer can execute, so some means of bridging the gap is required. This is where
the compiler comes in.

A compiler translates (or compiles) a program written in a high-level program-
ming language that is suitable for human programmers into the low-level machine
language that is required by computers. During this process, the compiler will also
attempt to spot and report obvious programmer mistakes.

Using a high-level language for programming has a large impact on how fast
programs can be developed. The main reasons for this are:

• Compared to machine language, the notation used by programming languages is
closer to the way humans think about problems.

• The compiler can spot some obvious programming mistakes.
• Programs written in a high-level language tend to be shorter than equivalent pro-

grams written in machine language.

Another advantage of using a high-level language is that the same program can be
compiled to many different machine languages and, hence, be brought to run on
many different machines.

On the other hand, programs that are written in a high-level language and auto-
matically translated to machine language may run somewhat slower than programs
that are hand-coded in machine language. Hence, some time-critical programs are
still written partly in machine language. A good compiler will, however, be able to

v

vi Preface

get very close to the speed of hand-written machine code when translating well-
structured programs.

The Phases of a Compiler

Since writing a compiler is a nontrivial task, it is a good idea to structure the work.
A typical way of doing this is to split the compilation into several phases with well-
defined interfaces. Conceptually, these phases operate in sequence (though in prac-
tice, they are often interleaved), each phase (except the first) taking the output from
the previous phase as its input. It is common to let each phase be handled by a
separate module. Some of these modules are written by hand, while others may be
generated from specifications. Often, some of the modules can be shared between
several compilers.

A common division into phases is described below. In some compilers, the order-
ing of phases may differ slightly, some phases may be combined or split into several
phases or some extra phases may be inserted between those mentioned below.

Lexical analysis This is the initial part of reading and analysing the program text:
The text is read and divided into tokens, each of which corresponds to a symbol in
the programming language, e.g., a variable name, keyword or number.

Syntax analysis This phase takes the list of tokens produced by the lexical anal-
ysis and arranges these in a tree-structure (called the syntax tree) that reflects the
structure of the program. This phase is often called parsing.

Type checking This phase analyses the syntax tree to determine if the program
violates certain consistency requirements, e.g., if a variable is used but not declared
or if it is used in a context that does not make sense given the type of the variable,
such as trying to use a boolean value as a function pointer.

Intermediate code generation The program is translated to a simple machine-
independent intermediate language.

Register allocation The symbolic variable names used in the intermediate code are
translated to numbers, each of which corresponds to a register in the target machine
code.

Machine code generation The intermediate language is translated to assembly
language (a textual representation of machine code) for a specific machine archi-
tecture.

Assembly and linking The assembly-language code is translated into binary rep-
resentation and addresses of variables, functions, etc., are determined.

The first three phases are collectively called the frontend of the compiler and the last
three phases are collectively called the backend. The middle part of the compiler is
in this context only the intermediate code generation, but this often includes various
optimisations and transformations on the intermediate code.

Each phase, through checking and transformation, establishes stronger invariants
on the things it passes on to the next, so that writing each subsequent phase is easier
than if these have to take all the preceding into account. For example, the type

Preface vii

checker can assume absence of syntax errors and the code generation can assume
absence of type errors.

Assembly and linking are typically done by programs supplied by the machine
or operating system vendor, and are hence not part of the compiler itself, so we will
not further discuss these phases in this book.

Interpreters

An interpreter is another way of implementing a programming language. Interpre-
tation shares many aspects with compiling. Lexing, parsing and type-checking are
in an interpreter done just as in a compiler. But instead of generating code from the
syntax tree, the syntax tree is processed directly to evaluate expressions and execute
statements, and so on. An interpreter may need to process the same piece of the
syntax tree (for example, the body of a loop) many times and, hence, interpretation
is typically slower than executing a compiled program. But writing an interpreter
is often simpler than writing a compiler and the interpreter is easier to move to a
different machine, so for applications where speed is not of essence, interpreters are
often used.

Compilation and interpretation may be combined to implement a programming
language: The compiler may produce intermediate-level code which is then inter-
preted rather than compiled to machine code. In some systems, there may even be
parts of a program that are compiled to machine code, some parts that are compiled
to intermediate code, which is interpreted at runtime while other parts may be kept
as a syntax tree and interpreted directly. Each choice is a compromise between speed
and space: Compiled code tends to be bigger than intermediate code, which tend to
be bigger than syntax, but each step of translation improves running speed.

Using an interpreter is also useful during program development, where it is more
important to be able to test a program modification quickly rather than run the pro-
gram efficiently. And since interpreters do less work on the program before execu-
tion starts, they are able to start running the program more quickly. Furthermore,
since an interpreter works on a representation that is closer to the source code than
is compiled code, error messages can be more precise and informative.

We will discuss interpreters briefly in Chap. 4, but they are not the main focus of
this book.

Why Learn About Compilers?

Few people will ever be required to write a compiler for a general-purpose language
like C, Java or SML. So why do most computer science institutions offer compiler
courses and often make these mandatory?

Some typical reasons are:

viii Preface

(a) It is considered a topic that you should know in order to be “well-cultured” in
computer science.

(b) A good craftsman should know his tools, and compilers are important tools for
programmers and computer scientists.

(c) The techniques used for constructing a compiler are useful for other purposes
as well.

(d) There is a good chance that a programmer or computer scientist will need to
write a compiler or interpreter for a domain-specific language.

The first of these reasons is somewhat dubious, though something can be said for
“knowing your roots”, even in such a hastily changing field as computer science.

Reason “b” is more convincing: Understanding how a compiler is built will al-
low programmers to get an intuition about what their high-level programs will look
like when compiled and use this intuition to tune programs for better efficiency.
Furthermore, the error reports that compilers provide are often easier to understand
when one knows about and understands the different phases of compilation, such as
knowing the difference between lexical errors, syntax errors, type errors and so on.

The third reason is also quite valid. In particular, the techniques used for reading
(lexing and parsing) the text of a program and converting this into a form (abstract
syntax) that is easily manipulated by a computer, can be used to read and manipulate
any kind of structured text such as XML documents, address lists, etc.

Reason “d” is becoming more and more important as domain specific languages
(DSLs) are gaining in popularity. A DSL is a (typically small) language designed
for a narrow class of problems. Examples are data-base query languages, text-
formatting languages, scene description languages for ray-tracers and languages for
setting up economic simulations. The target language for a compiler for a DSL may
be traditional machine code, but it can also be another high-level language for which
compilers already exist, a sequence of control signals for a machine, or formatted
text and graphics in some printer-control language (e.g. PostScript). Even so, all
DSL compilers will share similar front-ends for reading and analysing the program
text.

Hence, the methods needed to make a compiler front-end are more widely appli-
cable than the methods needed to make a compiler back-end, but the latter is more
important for understanding how a program is executed on a machine.

The Structure of This Book

The first chapters of the book describes the methods and tools required to read pro-
gram text and convert it into a form suitable for computer manipulation. This process
is made in two stages: A lexical analysis stage that basically divides the input text
into a list of “words”. This is followed by a syntax analysis (or parsing) stage that
analyses the way these words form structures and converts the text into a data struc-
ture that reflects the textual structure. Lexical analysis is covered in Chap. 1 and
syntactical analysis in Chap. 2.

Preface ix

The remainder of the book (Chaps. 3–9) covers the middle part and back-end
of interpreters and compilers. Chapter 3 covers how definitions and uses of names
(identifiers) are connected through symbol tables. Chapter 4 shows how you can
implement a simple programming language by writing an interpreter and notes that
this gives a considerable overhead that can be reduced by doing more things be-
fore executing the program, which leads to the following chapters about static type
checking (Chap. 5) and compilation (Chaps. 6–9. In Chap. 6, it is shown how ex-
pressions and statements can be compiled into an intermediate language, a language
that is close to machine language but hides machine-specific details. In Chap. 7, it
is discussed how the intermediate language can be converted into “real” machine
code. Doing this well requires that the registers in the processor are used to store the
values of variables, which is achieved by a register allocation process, as described
in Chap. 8. Up to this point, a “program” has been what corresponds to the body of a
single procedure. Procedure calls add some issues, which are discussed in Chap. 9.

The book uses standard set notation and equations over sets. Appendix contains
a short summary of these, which may be helpful to those that need these concepts
refreshed.

To the Lecturer

This book was written for use in the introductory compiler course at DIKU, the
department of computer science at the University of Copenhagen, Denmark.

At times, standard techniques from compiler construction have been simplified
for presentation in this book. In such cases references are made to books or articles
where the full version of the techniques can be found.

The book aims at being “language neutral”. This means two things:

• Little detail is given about how the methods in the book can be implemented
in any specific language. Rather, the description of the methods is given in the
form of algorithm sketches and textual suggestions of how these can be imple-
mented in various types of languages, in particular imperative and functional lan-
guages.

• There is no single through-going example of a language to be compiled. Instead,
different small (sub-)languages are used in various places to cover exactly the
points that the text needs. This is done to avoid drowning in detail, hopefully
allowing the readers to “see the wood for the trees”.

Each chapter has a section on further reading, which suggests additional read-
ing material for interested students. Each chapter has a set of exercises. Few of
these require access to a computer, but can be solved on paper or black-board. Af-
ter some of the sections in the book, a few easy exercises are listed as suggested
exercises. It is recommended that the student attempts to solve these exercises be-
fore continuing reading, as the exercises support understanding of the previous sec-
tions.

x Preface

Teaching with this book can be supplemented with project work, where students
write simple compilers. Since the book is language neutral, no specific project is
given. Instead, the teacher must choose relevant tools and select a project that fits
the level of the students and the time available. Depending on the amount of project
work and supplementary material, the book can support course sizes ranging from
5 to 7.5 ECTS points.

Acknowledgements

“Most people return small favors, acknowledge medium ones
and repay greater ones—with ingratitude.”
Benjamin Franklin (1705–1790)

The author wishes to thank all people who have been helpful in making this book
a reality. This includes the students who have been exposed to earlier versions of the
book at the compiler courses “Dat 1E” and “Oversættere” at DIKU, and who have
found numerous typos and other errors in the earlier versions. I would also like to
thank the instructors at Dat 1E and Oversættere, who have pointed out places where
things were not as clear as they could be.

Torben Ægidius MogensenCopenhagen, Denmark

xi

Contents

1 Lexical Analysis . 1
1.1 Regular Expressions . 2

1.1.1 Shorthands . 4
1.1.2 Examples . 5

1.2 Nondeterministic Finite Automata 6
1.3 Converting a Regular Expression to an NFA 9

1.3.1 Optimisations . 9
1.4 Deterministic Finite Automata . 11
1.5 Converting an NFA to a DFA . 13

1.5.1 Solving Set Equations . 13
1.5.2 The Subset Construction 16

1.6 Size Versus Speed . 18
1.7 Minimisation of DFAs . 19

1.7.1 Example . 21
1.7.2 Dead States . 23

1.8 Lexers and Lexer Generators . 24
1.8.1 Lexer Generators . 28

1.9 Properties of Regular Languages 29
1.9.1 Relative Expressive Power 29
1.9.2 Limits to Expressive Power 31
1.9.3 Closure Properties . 32

1.10 Further Reading . 32
1.11 Exercises . 33

References . 37

2 Syntax Analysis . 39
2.1 Context-Free Grammars . 40

2.1.1 How to Write Context Free Grammars 41
2.2 Derivation . 43

2.2.1 Syntax Trees and Ambiguity 45
2.3 Operator Precedence . 47

xiii

xiv Contents

2.3.1 Rewriting Ambiguous Expression Grammars 49
2.4 Other Sources of Ambiguity . 51
2.5 Syntax Analysis . 52
2.6 Predictive Parsing . 52
2.7 Nullable and FIRST . 53
2.8 Predictive Parsing Revisited . 56
2.9 FOLLOW . 58
2.10 A Larger Example . 60
2.11 LL(1) Parsing . 62

2.11.1 Recursive Descent . 63
2.11.2 Table-Driven LL(1) Parsing 64
2.11.3 Conflicts . 65

2.12 Rewriting a Grammar for LL(1) Parsing 66
2.12.1 Eliminating Left-Recursion 66
2.12.2 Left-Factorisation . 68
2.12.3 Construction of LL(1) Parsers Summarized 69

2.13 SLR Parsing . 70
2.14 Constructing SLR Parse Tables 73

2.14.1 Conflicts in SLR Parse-Tables 76
2.15 Using Precedence Rules in LR Parse Tables 77
2.16 Using LR-Parser Generators . 79

2.16.1 Declarations and Actions 79
2.16.2 Abstract Syntax . 80
2.16.3 Conflict Handling in Parser Generators 83

2.17 Properties of Context-Free Languages 84
2.18 Further Reading . 85
2.19 Exercises . 85

References . 90

3 Scopes and Symbol Tables . 91
3.1 Symbol Tables . 92

3.1.1 Implementation of Symbol Tables 92
3.1.2 Simple Persistent Symbol Tables 93
3.1.3 A Simple Imperative Symbol Table 94
3.1.4 Efficiency Issues . 95
3.1.5 Shared or Separate Name Spaces 95

3.2 Further Reading . 96
3.3 Exercises . 96

References . 96

4 Interpretation . 97
4.1 The Structure of an Interpreter . 98
4.2 A Small Example Language . 98
4.3 An Interpreter for the Example Language 99

4.3.1 Evaluating Expressions 100
4.3.2 Interpreting Function Calls 102

Contents xv

4.3.3 Interpreting a Program . 102
4.4 Advantages and Disadvantages of Interpretation 102
4.5 Further Reading . 105
4.6 Exercises . 105

References . 106

5 Type Checking . 107
5.1 The Design Space of Types . 107
5.2 Attributes . 109
5.3 Environments for Type Checking 109
5.4 Type Checking Expressions . 110
5.5 Type Checking of Function Declarations 112
5.6 Type Checking a Program . 112
5.7 Advanced Type Checking . 113
5.8 Further Reading . 116
5.9 Exercises . 116

References . 117

6 Intermediate-Code Generation . 119
6.1 Choosing an Intermediate Language 120
6.2 The Intermediate Language . 121
6.3 Syntax-Directed Translation . 123
6.4 Generating Code from Expressions 123

6.4.1 Examples of Translation 127
6.5 Translating Statements . 127
6.6 Logical Operators . 130

6.6.1 Sequential Logical Operators 131
6.7 Advanced Control Statements . 134
6.8 Translating Structured Data . 135

6.8.1 Floating-Point Values . 135
6.8.2 Arrays . 135
6.8.3 Strings . 140
6.8.4 Records/Structs and Unions 140

6.9 Translating Declarations . 141
6.9.1 Simple Local Declarations 142
6.9.2 Translation of Function Declarations 142

6.10 Further Reading . 143
6.11 Exercises . 143

References . 146

7 Machine-Code Generation . 147
7.1 Conditional Jumps . 147
7.2 Constants . 149
7.3 Exploiting Complex Instructions 149

7.3.1 Two-Address Instructions 153
7.4 Optimisations . 153
7.5 Further Reading . 155

xvi Contents

7.6 Exercises . 155
References . 157

8 Register Allocation . 159
8.1 Liveness . 160
8.2 Liveness Analysis . 160
8.3 Interference . 164
8.4 Register Allocation by Graph Colouring 165
8.5 Spilling . 167
8.6 Heuristics . 168

8.6.1 Removing Redundant Moves 171
8.6.2 Using Explicit Register Numbers 171

8.7 Further Reading . 172
8.8 Exercises . 172

References . 174

9 Functions . 175
9.1 The Call Stack . 175
9.2 Activation Records . 176
9.3 Prologues, Epilogues and Call-Sequences 177
9.4 Letting the Callee Save Registers 179
9.5 Caller-Saves Versus Callee-Saves 180
9.6 Using Registers to Pass Parameters 182
9.7 Interaction with the Register Allocator 184
9.8 Local Variables . 186
9.9 Accessing Non-local Variables 186

9.9.1 Global Variables . 186
9.9.2 Call-by-Reference Parameters 187

9.10 Functions as Parameters . 188
9.11 Variants . 189

9.11.1 Variable-Sized Frames . 189
9.11.2 Variable Number of Parameters 189
9.11.3 Direction of Stack-Growth and Position of FP 189
9.11.4 Register Stacks . 190

9.12 Further Reading . 190
9.13 Exercises . 190

References . 192

Appendix Set Notation and Concepts 193
A.1 Basic Concepts and Notation . 193

A.1.1 Operations and Predicates 193
A.1.2 Properties of Set Operations 194

A.2 Set-Builder Notation . 195
A.3 Sets of Sets . 196
A.4 Set Equations . 196

Contents xvii

A.4.1 Monotonic Set Functions 197
A.4.2 Distributive Functions . 198
A.4.3 Simultaneous Equations 199
Exercises . 199

Index . 201

List of Figures

Fig. 1.1 Regular expressions . 3
Fig. 1.2 Some algebraic properties of regular expressions 5
Fig. 1.3 Example of an NFA . 8
Fig. 1.4 Constructing NFA fragments from regular expressions 10
Fig. 1.5 NFA for the regular expression (a|b)∗ac 11
Fig. 1.6 Optimised NFA construction for regular expression shorthands . . 11
Fig. 1.7 Optimised NFA for [0–9]+ . 12
Fig. 1.8 Example of a DFA . 12
Fig. 1.9 DFA constructed from the NFA in Fig. 1.5 19
Fig. 1.10 Non-minimal DFA . 21
Fig. 1.11 Minimal DFA . 22
Fig. 1.12 Combined NFA for several tokens 26
Fig. 1.13 Combined DFA for several tokens 27
Fig. 1.14 A 4-state NFA that gives 15 DFA states 30
Fig. 2.1 From regular expressions to context free grammars 42
Fig. 2.2 Simple expression grammar . 42
Fig. 2.3 Simple statement grammar . 43
Fig. 2.4 Example grammar . 44
Fig. 2.5 Derivation of the string aabbbcc using Grammar 2.4 44
Fig. 2.6 Leftmost derivation of the string aabbbcc using Grammar 2.4 . . 45
Fig. 2.7 Syntax tree for the string aabbbcc using Grammar 2.4 46
Fig. 2.8 Alternative syntax tree for the string aabbbcc using Grammar 2.4 46
Fig. 2.9 Unambiguous version of Grammar 2.4 46
Fig. 2.10 Preferred syntax tree for 2+3*4 using Grammar 2.2 48
Fig. 2.11 Unambiguous expression grammar 50
Fig. 2.12 Syntax tree for 2+3*4 using Grammar 2.11 51
Fig. 2.13 Unambiguous grammar for statements 52
Fig. 2.14 Fixed-point iteration for calculation of Nullable 55
Fig. 2.15 Fixed-point iteration for calculation of FIRST 56
Fig. 2.16 Recursive descent parser for Grammar 2.9 64
Fig. 2.17 LL(1) table for Grammar 2.9 . 65

xix

xx List of Figures

Fig. 2.18 Program for table-driven LL(1) parsing 65
Fig. 2.19 Input and stack during table-driven LL(1) parsing 66
Fig. 2.20 Removing left-recursion from Grammar 2.11 68
Fig. 2.21 Left-factorised grammar for conditionals 69
Fig. 2.22 SLR table for Grammar 2.9 . 72
Fig. 2.23 Algorithm for SLR parsing . 72
Fig. 2.24 Example SLR parsing . 73
Fig. 2.25 Example grammar for SLR-table construction 73
Fig. 2.26 NFAs for the productions in Grammar 2.25 74
Fig. 2.27 NFAs for the productions in Grammar 2.25 with epsilon

transitions added . 75
Fig. 2.28 SLR DFA for Grammar 2.9 . 75
Fig. 2.29 Summary of SLR parse-table construction 76
Fig. 2.30 Textual representation of NFA states 84
Fig. 4.1 Example language for interpretation 99
Fig. 4.2 Evaluating expressions . 101
Fig. 4.3 Evaluating a function call . 103
Fig. 4.4 Interpreting a program . 104
Fig. 5.1 The design space of types . 108
Fig. 5.2 Type checking of expressions . 111
Fig. 5.3 Type checking a function declaration 113
Fig. 5.4 Type checking a program . 114
Fig. 6.1 The intermediate language . 122
Fig. 6.2 A simple expression language 124
Fig. 6.3 Translating an expression . 126
Fig. 6.4 Statement language . 128
Fig. 6.5 Translation of statements . 129
Fig. 6.6 Translation of simple conditions 130
Fig. 6.7 Example language with logical operators 132
Fig. 6.8 Translation of sequential logical operators 133
Fig. 6.9 Translation for one-dimensional arrays 136
Fig. 6.10 A two-dimensional array . 138
Fig. 6.11 Translation of multi-dimensional arrays 139
Fig. 6.12 Translation of simple declarations 142
Fig. 7.1 Pattern/replacement pairs for a subset of the MIPS

instruction set . 152
Fig. 8.1 Gen and kill sets . 162
Fig. 8.2 Example program for liveness analysis and register allocation . . . 163
Fig. 8.3 succ, gen and kill for the program in Fig. 8.2 163
Fig. 8.4 Fixed-point iteration for liveness analysis 164
Fig. 8.5 Interference graph for the program in Fig. 8.2 166
Fig. 8.6 Algorithm 8.3 applied to the graph in Fig. 8.5 169
Fig. 8.7 Program from Fig. 8.2 after spilling variable a 169
Fig. 8.8 Interference graph for the program in Fig. 8.7 170
Fig. 8.9 Colouring of the graph in Fig. 8.8 170

List of Figures xxi

Fig. 9.1 Simple activation record layout 177
Fig. 9.2 Prologue for the header f (p1, . . . , pm) using the frame layout

shown in Fig. 9.1 . 178
Fig. 9.3 Epilogue for the instruction RETURNresult using the frame

layout shown in Fig. 9.1 . 178
Fig. 9.4 Call sequence for x := CALLg(a1, . . . , an) using the frame layout

shown in Fig. 9.1 . 179
Fig. 9.5 Activation record layout for callee-saves 180
Fig. 9.6 Prologue for the header f (p1, . . . , pm) using callee-saves 180
Fig. 9.7 Epilogue for the instruction RETURNresult using callee-saves . . . 181
Fig. 9.8 Call sequence for x := CALLg(a1, . . . , an) using callee-saves . . . 181
Fig. 9.9 Possible division of registers for a 16-register architecture 182
Fig. 9.10 Activation record layout for the register division shown

in Fig. 9.9 . 182
Fig. 9.11 Prologue for the header f (p1, . . . , pm) using the register division

shown in Fig. 9.9 . 183
Fig. 9.12 Epilogue for the instruction RETURNresult using the register

division shown in Fig. 9.9 . 183
Fig. 9.13 Call sequence for x := CALLg(a1, . . . , an) using the register

division shown in Fig. 9.9 . 184

Chapter 1
Lexical Analysis

“I am not yet so lost in lexicography as to forget that words are
the daughters of earth, and that things are the sons of heaven.
Language is only the instrument of science, and words are but
the signs of ideas.”
Samuel Johnson (1709–1784)

The word “lexical” in the traditional sense means “pertaining to words”. In terms of
programming languages, words are objects like variable names, numbers, keywords
etc. Such word-like entities are traditionally called tokens.

A lexical analyser, also called a lexer or scanner, will as its input take a string
of individual letters and divide this string into tokens. Additionally, it will filter out
whatever separates the tokens (the so-called white-space), i.e., lay-out characters
(spaces, newlines etc.) and comments.

The main purpose of lexical analysis is to make life easier for the subsequent
syntax analysis phase. In theory, the work that is done during lexical analysis can be
made an integral part of syntax analysis, and in simple systems this is indeed often
done. However, there are reasons for keeping the phases separate:

• Efficiency: A lexer may do the simple parts of the work faster than the more
general parser can. Furthermore, the size of a system that is split in two may be
smaller than a combined system. This may seem paradoxical but, as we shall see,
there is a non-linear factor involved which may make a separated system smaller
than a combined system.

• Modularity: The syntactical description of the language need not be cluttered with
small lexical details such as white-space and comments.

• Tradition: Languages are often designed with separate lexical and syntactical
phases in mind, and the standard documents of such languages typically sepa-
rate lexical and syntactical elements of the languages.

It is usually not terribly difficult to write a lexer by hand: You first read past ini-
tial white-space, then you, in sequence, test to see if the next token is a keyword,
a number, a variable or whatnot. However, this is not a very good way of handling

T.Æ. Mogensen, Introduction to Compiler Design,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-0-85729-829-4_1, © Springer-Verlag London Limited 2011

1

2 1 Lexical Analysis

the problem: You may read the same part of the input repeatedly while testing each
possible token and in some cases it may not be clear where the next token ends. Fur-
thermore, a handwritten lexer may be complex and difficult to maintain. Hence, lex-
ers are normally constructed by lexer generators, which transform human-readable
specifications of tokens and white-space into efficient programs.

We will see the same general strategy in the chapter about syntax analysis: Spec-
ifications in a well-defined human-readable notation are transformed into efficient
programs.

For lexical analysis, specifications are traditionally written using regular expres-
sions: An algebraic notation for describing sets of strings. The generated lexers are
in a class of extremely simple programs called finite automata.

This chapter will describe regular expressions and finite automata, their proper-
ties and how regular expressions can be converted to finite automata. Finally, we
discuss some practical aspects of lexer generators.

1.1 Regular Expressions

The set of all integer constants or the set of all variable names are sets of strings,
where the individual letters are taken from a particular alphabet. Such a set of strings
is called a language. For integers, the alphabet consists of the digits 0–9 and for
variable names the alphabet contains both letters and digits (and perhaps a few other
characters, such as underscore).

Given an alphabet, we will describe sets of strings by regular expressions, an
algebraic notation that is compact and easy for humans to use and understand. The
idea is that regular expressions that describe simple sets of strings can be combined
to form regular expressions that describe more complex sets of strings.

When talking about regular expressions, we will use the letters (r, s and t) in
italics to denote unspecified regular expressions. When letters stand for themselves
(i.e., in regular expressions that describe strings that use these letters) we will use
typewriter font, e.g., a or b. Hence, when we say, e.g., “The regular expression s”
we mean the regular expression that describes a single one-letter string “s”, but
when we say “The regular expression s”, we mean a regular expression of any form
which we just happen to call s. We use the notation L(s) to denote the language (i.e.,
set of strings) described by the regular expression s. For example, L(a) is the set
{“a”}.

Figure 1.1 shows the constructions used to build regular expressions and the lan-
guages they describe:

• A single letter describes the language that has the one-letter string consisting of
that letter as its only element.

• The symbol ε (the Greek letter epsilon) describes the language that consists solely
of the empty string. Note that this is not the empty set of strings (see Exer-
cise 1.10).

• s|t (pronounced “s or t”) describes the union of the languages described by s and t.

1.1 Regular Expressions 3

Regular
expression

Language (set of strings) Informal description

a {“a”} The set consisting of the one-
letter string “a”.

ε {“”} The set containing the empty
string.

s|t L(s) ∪ L(t) Strings from both languages
st {vw | v ∈ L(s),w ∈ L(t)} Strings constructed by con-

catenating a string from the
first language with a string
from the second language.
Note: In set-formulas, “|” is
not a part of a regular ex-
pression, but part of the set-
builder notation and reads as
“where”.

s∗ {“”} ∪ {vw | v ∈ L(s), w ∈ L(s∗)} Each string in the language is
a concatenation of any num-
ber of strings in the language
of s.

Fig. 1.1 Regular expressions

• st (pronounced “s t”) describes the concatenation of the languages L(s) and L(t),
i.e., the sets of strings obtained by taking a string from L(s) and putting this in
front of a string from L(t). For example, if L(s) is {“a”, “b”} and L(t) is {“c”,
“d”}, then L(st) is the set {“ac”, “ad”, “bc”, “bd”}.

• The language for s∗ (pronounced “s star”) is described recursively: It consists of
the empty string plus whatever can be obtained by concatenating a string from
L(s) to a string from L(s∗). This is equivalent to saying that L(s∗) consists of
strings that can be obtained by concatenating zero or more (possibly different)
strings from L(s). If, for example, L(s) is {“a”, “b”} then L(s∗) is {“”, “a”, “b”,
“aa”, “ab”, “ba”, “bb”, “aaa”, . . . }, i.e., any string (including the empty) that
consists entirely of as and bs.

Note that while we use the same notation for concrete strings and regular expres-
sions denoting one-string languages, the context will make it clear which is meant.
We will often show strings and sets of strings without using quotation marks, e.g.,
write {a, bb} instead of {“a”, “bb”}. When doing so, we will use ε to denote the
empty string, so the example from L(s∗) above is written as {ε, a, b, aa, ab, ba,
bb, aaa, . . . }. The letters u, v and w in italics will be used to denote unspecified
single strings, i.e., members of some language. As an example, abw denotes any
string starting with ab.

4 1 Lexical Analysis

Precedence Rules When we combine different constructor symbols, e.g., in the
regular expression a|ab∗, it is not a priori clear how the different subexpressions
are grouped. We can use parentheses to make the grouping of symbols explicit such
as in (a|(ab))∗. Additionally, we use precedence rules, similar to the algebraic con-
vention that 3 + 4 ∗ 5 means 3 added to the product of 4 and 5 and not multiplying
the sum of 3 and 4 by 5. For regular expressions, we use the following conventions:
∗ binds tighter than concatenation, which binds tighter than alternative (|). The ex-
ample a|ab∗ from above, hence, is equivalent to a|(a(b∗)).

The | operator is associative and commutative (as it corresponds to set union,
which has these properties). Concatenation is associative (but obviously not commu-
tative) and distributes over |. Figure 1.2 shows these and other algebraic properties
of regular expressions, including definitions of some of the shorthands introduced
below.

1.1.1 Shorthands

While the constructions in Fig. 1.1 suffice to describe e.g., number strings and vari-
able names, we will often use extra shorthands for convenience. For example, if we
want to describe non-negative integer constants, we can do so by saying that it is
one or more digits, which is expressed by the regular expression

(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)∗

The large number of different digits makes this expression rather verbose. It gets
even worse when we get to variable names, where we must enumerate all alphabetic
letters (in both upper and lower case).

Hence, we introduce a shorthand for sets of letters. Sequences of letters within
square brackets represent the set of these letters. For example, we use [ab01] as
a shorthand for a|b|0|1. Additionally, we can use interval notation to abbreviate
[0123456789] to [0–9]. We can combine several intervals within one bracket and
for example write [a–zA–Z] to denote all alphabetic letters in both lower and upper
case.

When using intervals, we must be aware of the ordering for the symbols in-
volved. For the digits and letters used above, there is usually no confusion. How-
ever, if we write, e.g., [0–z] it is not immediately clear what is meant. When us-
ing such notation in lexer generators, standard ASCII or ISO 8859-1 character sets
are usually used, with the hereby implied ordering of symbols. To avoid confu-
sion, we will use the interval notation only for intervals of digits or alphabetic let-
ters.

Getting back to the example of integer constants above, we can now write this
much shorter as [0–9][0–9]∗.

Since s∗ denotes zero or more occurrences of s, we needed to write the set of
digits twice to describe that one or more digits are allowed. Such non-zero repetition
is quite common, so we introduce another shorthand, s+, to denote one or more

sample content of Introduction to Compiler Design (Undergraduate Topics in Computer Science)

download The Needlecraft Book
click SPQR: A Roman Miscellany
read Nutrition: An Applied Approach (3rd Edition)
Mixed Methods Research: Merging Theory with Practice here

http://kamallubana.com/?library/The-Needlecraft-Book.pdf
http://fitnessfatale.com/freebooks/Chain-of-Blame--How-Wall-Street-Caused-the-Mortgage-
and-Credit-Crisis.pdf
http://www.shreesaiexport.com/library/The-Juggler.pdf
http://test1.batsinbelfries.com/ebooks/Mixed-Methods-Research--Merging-Theory-with-
Practice.pdf

Powered by TCPDF (www.tcpdf.org)

http://kamallubana.com/?library/The-Needlecraft-Book.pdf
http://fitnessfatale.com/freebooks/Chain-of-Blame--How-Wall-Street-Caused-the-Mortgage-and-Credit-Crisis.pdf
http://www.shreesaiexport.com/library/The-Juggler.pdf
http://test1.batsinbelfries.com/ebooks/Mixed-Methods-Research--Merging-Theory-with-Practice.pdf
http://kamallubana.com/?library/The-Needlecraft-Book.pdf
http://fitnessfatale.com/freebooks/Chain-of-Blame--How-Wall-Street-Caused-the-Mortgage-and-Credit-Crisis.pdf
http://fitnessfatale.com/freebooks/Chain-of-Blame--How-Wall-Street-Caused-the-Mortgage-and-Credit-Crisis.pdf
http://www.shreesaiexport.com/library/The-Juggler.pdf
http://test1.batsinbelfries.com/ebooks/Mixed-Methods-Research--Merging-Theory-with-Practice.pdf
http://test1.batsinbelfries.com/ebooks/Mixed-Methods-Research--Merging-Theory-with-Practice.pdf
http://www.tcpdf.org

