[HACKS| 9|

Jared St. Jean

Kinect

Tips & Tools for Motion

O'REILLY" Make:

Kinect Hacks

Jared St. Jean

Published by O’Reilly Media, Inc.

Preface

The way we interact with machines is always changing. As technology evolves, new ways of
interacting with computers become available to us, one innovative breakthrough after the next. If we
go back 10 years, RIM was just starting to implement phone capabilities into their line of Blackberry
mobile devices. Now we have touch screens capable of delivering a full computing experience in the
palm of our hands. Voice recognition software is finally becoming mainstream with the introduction
of Siri on the iPhone 4S. We are rapidly entering an age in which being tethered to an accessory or
peripheral, such as a mouse or keyboard, will be considered an archaic way of getting things done.

Touch screen interfaces are all the rage right now, but the next true evolution in human/computer
interaction won't require you to physically touch a thing. You've seen it before in a number of sci-fi
films: some guy in a futuristic get up is waving his hands around, barking orders at a computer that
seamlessly tracks his movement and executes every command with flawless accuracy. The proper
name for this type of computer interaction is called a Natural User Interface (NUI), which describes
the ability to issue commands to a device using nothing more than your own natural body movement
gestures, and voice. You'll no longer need to clean those germ-infested keyboards and touch screens
pick up new batteries for your wireless mouse or gaming controller. The possibilities are truly endle:
and we're already starting to see deployments of NUI interactivity all over the world. Soon you'll see
NUIs in store windows, bus stations, malls, as well as many other places that could benefit from
adding natural human interaction to the process of selling and providing information.

One great piece of tech that has ushered in this new wave of creative development is the Microsoft
Kinect. The Kinect has introduced itself to the masses at the best possible time. In its short existence
it has proven to be a great option for those looking to spice up the way we work with computers. For
starters, the Kinect is a fraction of the cost of most professional 3D depth sensing cameras. A wide
assortment of programs allow you to use Kinect 3D depth data with Windows, Linux, and Mac
machines. Whether you're an innovative professional interested in bleeding edge tech, or a part time
hobbyist with a great new idea, the Kinect is easy to set up, it's cheap, and it's loaded with potential t
change the way we interact with machines.

My intention from the start was to write a book that everyone could take something from. Whether
you're completely new to the scene or have been tinkering around with the Kinect since its debut,
there's something in here for everyone. Some of the hacks range from basic installation of tool sets o
programs to detailed code write-ups relating to a wide range of available IDEs such as Processing an
openFrameworks.

There are gesture-based solutions that work with a quite a few diverse applications in this book. For
music related application, there is information on how to set up Ableton Live with Kinectar. If moca;
is your thing, there are tips and tricks for using Blender or Animata with NI mate. HTMLS5 and
JavaScript integration is included using Zigfu's ZDK along with full-on 3D object and scene recreati
written in C++ using PCL and OpenCV. If visual effects are your thing, be sure to check out all the
diverse Kinect hacks using open source IDEs such as Processing and openFrameworks.

Whether you're looking for some fun projects to work on in your spare time or finding the perfect
jump off spot to get started on your next big project, I believe you'll be able to find something in her
that will appeal to you. Whatever is your proverbial cup of tea, there's definitely something in here f
everyone to enjoy working on.

The Story

Writing this book was one of the best experiences of my life, hands down. I had a pretty good idea of
what was out there and how to set things up, but what I learned going through the amount of diverse
hacks that would eventually compose the content of this book truly made me aware of the great work
people are doing with the Kinect. I got to know many of the talented people involved in the scene fro
around the world and learned an incredible amount in the process.

I started off by writing the guides necessary to get you started on your preferred OS. The great thing
about the Kinect scene is that it was born out of the open source community. This ensured that driver
would be released across all platforms. From there, various libraries were released allowing people tt
start playing around with Kinect data in other open source IDEs such as Processing, openFramework:
and Cinder. Getting the Kinect up and running and installing the proper libraries for your IDE of
choice is the first step. After that, the real fun begins.

After completing the first two chapters, things really started to get interesting. A wide assortment of
new tools became available to play around with. For example, working with Chris Vik’s amazing
Kinectar app, which allows you to be your very own hands-free composer and musician, and Stephan
Howell’s Kinect2Scratch, which uses the Scratch IDE, was an unbelievable experience. I had a blast
settings things up and then playing around with the end results. I can honestly tell you that I loved
working on this book from beginning to end.

Acknowledgments

A big huge juicy thank you to everyone at O’Reilly Media for taking a chance on this lowly blogger.
never thought in my wildest dreams that putting a bit of work into a niche scene like Kinect hacking
would result in something like this. In my opinion, they took a huge chance with me and I hope I was
able to deliver a great product to add to their impeccable track record in the world of technical
writing.

Even though O’Reilly Media made this thing you’re holding in your hands a reality, I would have
never had the opportunity if it wasn’t for Greg Mackenzie and the Dashhacks network. His passion fc
hacking and modding electronics eventually produced the best network of hacking sites on the
Internet. The journey seemed short in hindsight, but what I got out of it has changed my life forever.
Mad props for letting me do my own thing, GregCube.

Last but certainly not least, the amazing folks who took time out of their lives to develop such
incredible projects using Kinect’s 3D depth sensing capabilities. You are an inspiration and also
responsible for making us think beyond the keyboard and mouse, ushering in a new age of interactin;
with machines. In no particular order, here is my "I’'m not worthy!" list of incredible contributors to

both this book and the scene in general. Without the efforts of each and all of you—I can’t complete
this sentence because I don’t even want to think about it!

Thanks to Daniel Shiffman, Joshua Blake, Kyle McDonald, Nicolas Burrus, Shawn Wallace, Brian
Jepson, Ryan Challinor, Chris Vik, Julius Tuomisto, Peter Nash, RJ Durran, Ning Ma, Kris
Temmerman, Mike Newell, Andrew Berg, Felix Endres, Stephen Howell, Jordi Llobet Torrens, Anna
Fusté Lleixa, Jeremy Archer, Taylor Veltrop, Takashi Nishibayashi, Daniel Ho, Javier Gracia Carpio
Theodore Blackman, Amir Hirsch, and Stefan Stegmueller.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic
Indicates new terms, URLSs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements such as
variable or function names, databases, data types, environment variables, statements, and
keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width 1italic

Shows text that should be replaced with user-supplied values or by values determined by context.

TIP

These lines signify a tip, suggestion, warning, caution, or general note.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in you
programs and documentation. You do not need to contact us for permission unless you’re reproducin,
a significant portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of example code from
this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: “Kinect Hacks by Jared St. Jean (O’Reilly). Copyright 2013 Jared
St. Jean, 978-1-449-31520-7.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free t
contact us at permissions @oreilly.com.

Safari® Books Online

NOTE

Safari Books Online is an on-demand digital library that lets you easily search over 7,500 technology and creative reference book
and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online. Read books
on your cell phone and mobile devices. Access new titles before they are available for print, and get
exclusive access to manuscripts in development and post feedback for the authors. Copy and paste
code samples, organize your favorites, download chapters, bookmark key sections, create notes, prin
out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full digital acces:
to this book and others on similar topics from O’Reilly and other publishers, sign up for free at
http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://oreil.ly/kinect_hacks

To comment or ask technical questions about this book, send email to:

bookquestions @oreilly.com

For more information about our books, courses, conferences, and news, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Contributors

Anna Fusté Lleixa (hi @annafuste.com) is a Multimedia Engineering student at La Salle Barcelona

(Ramon Llull University), an Audiovisual Communication Graduate (Pompeu Fabra University), and
an Intern at Ia Salle HCI Department. Find out more at http://www.annafuste.com.

Peter Nash is a creative technologist based in London. He thrives on variety, including taking on
hardcore academic challenges (he achieved "top of the year" for researching Nanotechnology in
College) and experimenting with interactive installations, programming mobile apps and web, and
working with big high street retailers to keep with it. He is currently pioneering a start-up dedicated 1
making the lives of smartphone app developers and designers easier. Peter contributed Draw in the A
with Processing.

Reach him via LinkedIn, Twitter, or his personal website.

RJ Duran is a Computational Artist & Engineer exploring the inherent properties and aesthetics of
biological and emergent pattern formation through Media Arts & Technology. His fascination with
natural systems, engineering, traditional art forms such as music and architecture, and philosophy
inform and guide his artistic pursuits. His mission as a creator is to understand the "deep complexity
embedded within systems in order to develop engaging, interactive and experiential audio, visual, an
physical tools and experiences for education, exploration, and enlightenment.

He holds a BS in Electrical Engineering from Colorado State University, a certificate in Audio
Engineering from The Conservatory of Recording Arts & Sciences, and a certificate in Digital Cultus
& Creative Technology from Boulder Digital Works. He is currently a Graduate Student Researcher
the Media Arts & Technology program at the University of California Santa Barbara. RJ contributed
Create a Gravitational Particle Effect. He can be reached at his website or via email at

rjduranjr @gmail.com.

Born in China, Ning Ma now lives in Germany and has received his Master’s Degree in
Computational Engineering in Faculty Civil and Environmental Engineering from Ruhr-Bochum
University. He is currently a PhD candidate.

Apart from his studies, he is very interested in digital graphics. He is self-taught to work with design
tools, playing around with images and animations. His recent experiments with Kinect extends the
field of his hobby. He loves actually interacting with graphics by programming is fun and exciting.
Ning contributed Make Objects Follow a Tracked User’s Hand and Dynamically Change Colors and
Background Perspective.

Mike Newell works for Goodby Silverstein & Partners. Mike contributed Create a Live 3D Renderec
Effect with Processing.

He can be reached via his personal website, via email at mike @iwearshorts.com, on Twitter at
@newshorts, or on Google+.

Stephen Howell is a Computing Lecturer in the Computing Dept. at the Institute of Technology
Tallaght, Dublin. He lectures on Kinect software development in modules called Interactive Media
Design & Interactive Media Development. Visit his website at http://scratch.saorog.com. Stephen
contributed Create a Basic Tennis Game Using Scratch, Build a Defender-Style Shooter Game with
Scratch, and Build a Kinect Space Shooter Game in Processing.

Stephen can be contacted by email at stephen.r.howell @gmail.com.

Jordi Llobet (jordi.llobet@me.com) is a Multimedia Engineering student at La Salle Barcelona
(Ramon Llull University). He’s also a team member at the Interactive Prototype Design Group (La
Salle HCI Department). Find out more at http://www.jordillobet.es. Jordi contributed Build a
Processing Fridge Magnet Game.

Jeremy Archer (https://github.com/fatlotus) is a student at the University of Chicago. He works on
various open-source projects, primarily for scientific computing, at Chicago’s Computation Institute
(http://ci.uchicago.edu/). He is also co-founder of Carbonless Community, a green energy software
company based in Chicago. Jeremy contributed Control a Robotic Arm.

Taylor Veltrop grew up near Chicago surrounded by Lego, Meccano, and computers. His first
humanoid robot was made from wood (mostly by his father) at the age of 6. He studied Japanese and
computer science at the engineering school in the University of Colorado and eventually found
himself in Japan chasing robot dreams. There he came across Kinect-based teleoperation while
exploring solutions for robot hand-eye coordination and navigation. Taylor currently resides in Paris
working with Aldebaran Robotics. Taylor contributed Control a Robot’s Navigation and Use
Candescent NUI.

Taylor can be reached via email at taylor @veltrop.com, at his personal website, or on YouTube.

Stefan Stegmueller is a professional Software Architect/Developer from Switzerland (Master of
Science in Computer Science). Candescent.ch is his private development project. I runs candescent.c
to publish programs which he writes mainly for himself but could be useful for others too.

One of his current fields of interest is natural user interaction. Stefan believes that after the Comman
Line Interface (CLI) and the Graphical User Interface (GUI) the Natural User Interface (NUI) is the
next big thing in human-machine interaction. Stephan contributed Use Kinect Jesture for Mac.

Stefan can be reached via email at info@candescent.ch, at his website, blog, and on Twitter at
@CandescentCH.

Winect is a final year project by Daniel Ho in National University of Singapore, School of
Computing. Since graduation, he had continued this project during his free time at
http://ixorastudios.com/software/winect/. Daniel contributed Use Winect for Windows.

Kris Temmerman contributed Create a Hairy Effect: Create a Hairy Effect.

Andrew Berg contributed Create Hand Tracking Trails Using Cinder: Create Hand Tracking Trails
Using Cinder.

Chris Vik contributed Install Kinectar: Install Kinectar; Map Parameters in Ableton Live with
Kinectar: Map Parameters in Ableton Live With Kinectar; Set Up a Drum Kit with Kinectar: Set Up
Drum Kit with Kinectar; and Create a Dubstep Wobble Bassline with Kinectar: Create a Dubstep
Wobble Bassline with Kinectar.

Javier Gracia Carpio contributed Use Processing to Create a 3D Scanner with Mesh Viewer: Use
Processing to Create a 3D Scanner with Mesh Viewer.

Felix Endres contributed Set Up PCL and OpenCV: Set Up PCL and OpenCV; Display a Colored
Point Cloud: Display a Colored Point Cloud; Use Features to Track Camera Image Motion: Use
Features to Track Camera Image Motion; Fuse Point Clouds into a Consistent 3D Model: Fuse Point
Clouds into a Consistent 3D Model; Add Convenience Functionality to a 3D Model: Add Convenienc
Functionality to 3D Model; and Next Steps: SLAM, OctoMaps, Surface Reconstruction: Next Steps;
SLAM, OctoMaps, Surface Reconstruction.

Takashi Nishibayashi contributed Use Linux Gesture-Based Mouse Control: Use Kinect Justure for
Mac.

Chapter 1. Getting Up and Running

The Kinect was designed and marketed as an accessory to the Xbox 360 with the intention of breathis
new life into Microsoft’s gaming division without the company having to release a brand new consol
The multimillion dollar idea was to offer a new and exciting way for Xbox 360 owners to play video
games. Microsoft’s marketing department hit the nail on the head with the catchy tag line "You are tl
controller"; in other words, the Kinect offers a natural user interface free of any cables, chargers, or
controllers. When you move your hand, the game or dashboard interface responds accordingly. The
Kinect was launched on November 4th in North America at a retail price of $150 and allowed users t
simply plug the device into their Xbox 360 and start playing right away.

What Microsoft may not have anticipated was that its affordable gaming accessory was capable of
many great things once placed in the hands of creative developers around the world. A mere six days
after its launch, the Kinect was hacked and people started experimenting with it, shortly thereafter
discovering what they could do with this affordable depth-sensing camera.

To truly get an idea of the amazing things you can do with the Kinect, you need to understand what i
actually is and what it can do.

Hack #1. How the Kinect Works

The Kinect is a pretty impressive piece of tech. Sporting an RGB camera, multiarray microphones,
and a depth sensor capable of full-body 3D motion capture along with facial and voice recognition
capabilities, this video game accessory packs a serious punch. The Kinect uses both hardware and
software simultaneously to capture and interpret depth data on the fly. The software, developed by a
company called PrimeSense, is able to recognize humans based on their skeletal structure (Figure 1-
1). People have the distinct advantage of, well, standing on two legs and having arms. This is how the
Kinect is able to determine that a human being is present. It can then focus on capturing data from th
movements of that recognized "player." Unless you have apes frequently interrupting your game tim
by busting into your living room, this is a pretty rock-solid means of isolating and tracking a human
skeleton in the room and disregarding everything else.

Figure 1-1. PrimeSense skeletal tracking viewer

At its core, the Microsoft Kinect’s true innovation and technical prowess lie within its depth-sensing
technology. An infrared (IR) cluster of light (also referred to as a point cloud) is produced and spreac
out across a room, carrying with it encoded information in the form of varying light patterns—pictur
hundreds of little laser-point—size dots covering the room. The IR beams that are being emitted are
undetectable to the naked eye, but when viewed in the dark through night vision goggles, they are on
brilliant display (Figure 1-2).

Point cloud data is accurate only at a distance of approximately 1.2 to 3.5 m (3.9 to 11 ft) but within
this range, data is collected and sent back, relaying information such as the distance of any detected
objects based on any deformations in the IR light patterns. Two onboard complementary metal-oxide
semiconductor (CMOS) cameras are used in individual capacities to further analyze any data that’s
been collected from the IR light patterns. The RGB camera collects 30 frames per second of actual
real-time events at a 640x480 resolution, while the other handles the 3D depth imaging. An onboard
processor then renders the collected data in the form of 3D images so everything is wrapped up in a
nice little package—and all of this for a measly $150. If only it did things other than rate my pathetic
dance moves or let me pet jungle cats. If only....

Figure 1-2. IR light pattern using night vision

Hack #2. How the Kinect Was Hacked

I think it’s a pretty safe bet to say that the Kinect would have been hacked at some point or another. I
potential was just too great to have people sit around i1dly waiting for Microsoft to release its own
software development kit (SDK) for the device. For all we know, it may never have even released its
SDK were it not for the efforts of the OpenKinect community. Actually, I'm getting a little bit ahead
of myself. Let’s back it up to the fledgling days of the Kinect’s launch and talk about a little bounty
put forth by the good folks over at Adafruit.

The bounty, called the X prize, was to be awarded to the first person able to produce open source
drivers for the Kinect. The drivers could be functional on any operating system and had to be
accompanied by an application that demonstrated their functionality by displaying a split window of
the depth data and the RGB camera. Microsoft caught wind of this little competition, and its initial
response was that of any company undergoing a major hardware launch. Since the Xbox 360 was
hacked quite some time ago, this knee-jerk response was issued from a Microsoft PR rep:

Microsoft does not condone the modification of its products... With Kinect, Microsoft built in numerous hardware and software
safeguards designed to reduce the chances of product tampering. Microsoft will continue to make advances in these types of
safeguards and work closely with law enforcement and product safety groups to keep Kinect tamper-resistant.

Most would cower in fear thinking of what Microsoft, with its deep pockets, could do to keep this sor
of thing from catching the world’s attention, but what actually happened was the complete opposite.
Microsoft’s response enticed Adafruit to increase the bounty of its X prize, not shy away. Fast-forwa
six days, and a winner was announced! Héctor Martin took the prize and dubbed his open source
Kinect drivers "libfreenect.” With this, a new generation of open source Kinect development was
under way, and excited developers interested in working with Kinect wasted no time getting involvec
The OpenKinect project was born, and a community of programmers and developers began building
futuristic applications using the Kinect’s depth-sensing capabilities.

On December 9, 2010, PrimeSense embraced the work being put forth by the open source community
with the release of OpenNI and NITE. Things were really starting to get cooking at this point. With
backing of the developers responsible for the Kinect hardware, a wave of hacks began gaining a lot o
attention all around the world. Wrappers started pouring in at this point, enabling people to toy arour
with their favorite programming language or framework in order to start experimenting with their ov
Kinect-related projects.

If ever there were a case for presenting the term "hacker" in a positive light, the efforts of the

OpenKinect community would be it.

Hack #3. Choose a Framework and Driver

This section is all about getting your Kinect set up on your computer so you can get started on that
next game changer. We’ll be covering the installation process with a few different methods to get up
and running. Step-by-step walkthroughs are available for Windows 7, Mac OS X, and Ubuntu that
cover installing the libfreenect drivers, OpenNI, NITE, and SensorKinect, along with the Kinect SDK
For the sake of consistency, the guides formulated in this section have been successfully tested on a
Mac running OS X 10.7, Windows 7, and Ubuntu 11.10.

Although having a wide variety of options can be a great thing, at times, the potential of getting mixe
up in things can always rear its nasty little head. So we’ll focus on two main options. As I mentioned
earlier, libfreenect was the first set of open source—compatible Kinect drivers made available to the
public. It is maintained by the Open Kinect community of developers and can be downloaded at
https://github.com/OpenKinect/libfreenect.

PrimeSense, the developers behind the Kinect’s depth-sensing technology, released OpenNI, a
derivative of the open source LGPL PrimeSense code. You’ll need to also install the avin2
SensorKinect module, built specifically for the Kinect based on code from the PrimeSense sensor
driver, if you want to use OpenNI.

So what we’re left with is two completely viable options available for us to use when working with
Kinect depth data. The question now is, which one is right for you?

Well, for starters, if you plan on releasing your program in some commercial form, OpenNI and
libfreenect are both fine to use, so you can scratch that off of your list. If you’re interested in motor
control, however, go with libfreenect; OpenNI with SensorKinect does not support it. For higher-leve
NUI support, OpenNI has its NITE middleware integration available. libfreenect has a much more
complicated installation process, so if you're unfamiliar with compilers and are more comfortable
dealing with binary installers, OpenNI/NITE involves a much less complicated installation process.
Whichever route you decide to take, you’ll be in good hands. Both organizations have a huge,
supportive community with great online forums.

There are usually two different methods of installing the open source drivers required to capture datz
from the Kinect sensor. You can compile the latest builds from scratch, or just install the binaries if
available. We’ll cover both methods in case one or the other just doesn’t quite work out the way it wa
supposed to. It’s always good to have a plan B, right?

Install OpenNlI, SensorKinect, and NITE for Windows 7

For the sake of simplicity, we’ll start things off the nice and easy way. Since PrimeSense was kind
enough to release its own binary installers, we’ll begin with this route.

TP

The title of this hack is a bit deceiving. You can apply these guidelines to a Windows XP or Vista machine, if that’s all you have.
As I mentioned before, however, I used a Windows 7 machine for all of these guides.

Download the OpenNI package installer from
http://www.openni.org/Downloads/OpenNIModules.aspx.

Select OpenNI Packages from the first drop-down menu. From the next drop-down, select Stable, anc
then choose PrimeSense Package Stable Build for Windows-Development Edition.

TIP

Be sure to download the appropriate 32- or 64-bit versions depending on your system. If you don’t know what you’re running, go
to Control Panel — System and Security — System, and see System Type.

Launch the executable file to begin installing OpenNI and NITE.
Download the Kinect sensor drivers from https://github.com/avin2/SensorKinect.

Once you’ve downloaded the package, extract the contents and install the driver mod by executing th
binary located in the Bin folder. Be sure to choose the right 64- or 32-bit installer.

NOTE

When prompted, allow the unsigned driver from PrimeSense during the installation.

To see if everything was installed correctly, plug the Kinect into a USB port and make sure it is
plugged into a power source as well. Go to your Start Menu — All Programs — OpenNI — NiViewe:
After a few seconds, a window should open showing you a simple depth view from the Kinect sensor
(Figure 1-3).

-
B

-
-

i

o d =5] =] I —
e | oo W]

Figure 1-3. A NiSimpleViewer demo

To see if the NITE samples are working, you’ll need to copy all of the sample XML files from the
PrimeSense/NITE/Data folder to the PrimeSense/Sensor/Data folder. Once they’ve been copied over,
go to Start — All Programs — PrimeSense — NITE 64 bit (for those who installed the 64-bit version
— Samples — Sample-Box64 (Figure 1-4).

B PrimeSense Nite Boxes Sample = || =7 =2

L

Figure 1-4. PrimeSense NITE SampleBox

Install OpenNI, NITE, and SensorKinect for OS X

Before we get started, you’ll need the following applications installed and configured:

m Xcode

m CMake
MacPorts
m Git

You’ll need to install a few library dependencies as well. Using MacPorts, install libtool and libusb-
devel + universal. Open up your Terminal application (Applications — Utilities — Terminal) and rui
the following command:

sudo port install libtool

Restart your Mac. Open up your Terminal again and install libusb-devel + universal as follows:

sudo port install libusb-devel +universal
Restart your computer once again. Create a directory in which you’ll store all of our installers. We’ll
create a Kinect folder in the Home directory.

cd ~/

mkdir Kinect
cd Kinect

Download the latest version of OpenNI from its GitHub repository.

sudo git clone https://github.com/OpenNI/OpenNI.git
Change the working directory to OpenNI/Platform/Linux-x86/CreateRedist and run RedistMaker.

sudo ./RedistMaker

Once the build has finished, back out of that directory and make your current working directory
Bin/Release.

cd ../Bin/Release
Run one of the examples to make sure everything is working properly.
sudo ./Sample-NiUserTracker

Next, we’ll need to install the avin2 SensorKinect driver mod to retrieve data captured by the Kinect.
Navigate back to the Kinect directory and use Git to download the latest version of SensorKinect.

cd ~/Kinect
sudo git clone https://github.com/avin2/SensorKinect.git

Change your working directory to ~/Kinect/SensorKinect/Bin and extract the contents of
SensorKinect-Bin-MacOSX-v*...* tar.bz2.
Navigate into the newly extracted directory and run the installer script.

sudo ./install.sh
Last but not least, we’ll want to install NITE. Download the latest unstable build of NITE from
http://www.openni.org and place it in your Kinect directory. (Go to

http://openni.org/Downloads/OpenNIModules.aspx and select OpenNI Compliant Middleware
Binaries — Unstable Release — PrimeSense NITE Mac OSX.)

I will refer to the NITE root directory as NITE to keep things consistent. If you’d like to rename it, b
all means do so.

mv nite-bin-macosx-v*.*.*.,* NITE
Extract the contents of the file, change the working directory to the NITE folder, and run the install
script.

sudo ./install.sh
You will then be prompted to enter the PrimeSense license key, which is
OKO0Ik2JeIBYCLPWVnMoRKN5cdY4=.

We’re almost done! If you want to run some of the examples, you’ll need to move the sample XML
files from the SensorKinect/Data directory over to NITE/Data. You can do this in the Finder or in a
Terminal.

Cruise on over to the Samples directory and try one out for size! (See Figure 1-5.)

cd ~/Kinect/NITE/Samples/Bin/Release
sudo ./Sample-PointViewer

Figure 1-5. PrimeSense NiUserTracker sample

Install OpenNI, NITE, and SensorKinect for Ubuntu

Getting your Kinect working with Ubuntu is pretty straightforward. It will definitely help if you’re
comfortable working on a command line. We’ll be using apt to download everything except the NITE
middleware package, so things should go smoothly.

First, as always, we’ll need to ensure that all of the required libraries and other dependencies are
installed before we’ll be able to download the required SDK, drivers, and middleware from the usual
spots.

We’ll install OpenNI first.

WARNING

The order in which we install each component is important, so try not to veer off course and install NITE or SensorKinect before
OpenNI!

There are a few libraries that we need to install, so we’ll tackle those before moving on. I’ve listed th
requirement names along with the official sites that host the downloads. Instead of installing them al
manually, apt commands you to install everything in one swift motion.

Open up your Terminal application and enter the following commands, allowing time for each install
to finish successfully before moving on to the next one.

sudo apt-get install git-core cmake g++ python \
freeglut3-dev pkg-config build-essential \
libxmu-dev libxi-dev libusb-1.0-0-dev \

doxygen graphviz

Don’t be surprised if this takes a lifetime to complete, especially if you’re using a fresh Ubuntu
installation.

You’ll also need to install the Java Development Kit. I used a separate session of apt since I needed t
build a repository.

sudo add-apt-repository "deb http://archive.canonical.com/ lucid partner"
sudo apt-get update
sudo apt-get install sun-java6-jdk

Hopefully everything installs properly without your having to cruise the backwaters of the Internet it
search of dependencies for those dependencies. Always remember, in times of trouble, Copy, Google
and Paste are your best friends in the whole wide Web. Moving on, create a Kinect directory whereve
you’d like. I chose the Home directory.

mkdir ~/Kinect
cd ~/Kinect

Download OpenNI using Git and make sure you’re dealing with the unstable version.

sudo git clone https://github.com/OpenNI/OpenNI.git
sudo git checkout unstable

To check out some of the samples, you’ll need to build them first.

cd OpenNI/Platform/Linux-x86/Build
sudo ./RedistMaker

TIP

If you’re unable to run the previous command, you may need to change the file permissions. Type chmod 777 * while in the
Build directory.

After compiling everything, we can now move on to installing the SensorKinect driver.

cd ~/Kinect
sudo git clone https://github.com/avin2/SensorKinect

Change the working directory to CreateRedist to compile and create a redist package.
cd SensorKinect/Platform/Linux-x86/CreateRedist
Run the script RedistMaker.
sudo ./RedistMaker
Navigate to the newly created Redist directory located inside of Build and run the installation script.

cd ../Build/Redist
sudo ./install.sh

Change the working directory to Build and run make and then make install.

cd ~/Kinect/SensorKinect/Platform/Linux-x86/Build
sudo make && sudo make install

That’s it for SensorKinect. The final step is to install the PrimeSense NITE Middleware package. Fir:

download the version of PrimeSense NITE from
http://www.openni.org/Downloads/OpenNIModules.aspx. In the first drop-down, select OpenNI
Compliant Middleware Binaries. Then select the unstable version. Download the package that
corresponds to your Ubuntu installation (32- or 64-bit).

TIP

I created a new directory called NITE in which I placed the contents of the extracted NITE package. This is just to keep things
consistent, as version numbers may be different at the time this book is released.

If you want to try out some of the sample programs, you’ll need to edit the XML files located in the
Data directory to include the PrimeSense license key, as shown in Figure 1-6. To do this, you’ll need
to change the third line of the XML sample files from:

<License vendor="PrimeSense" key=""/>
to:

<License vendor="PrimeSense"
key="0K0Ik2JeIBYCLPWVnMoRKNn5cdY4="/>

F

Figure 1-6. NITE XML sample key

Change the working directory to NITE and run the installation script.

cd ~/Kinect/NITE
./sudo install.sh

Right away, you’ll be prompted to enter the PrimeSense license key. Enter the following key to
complete the installation process.

0KOIk2JeIBYCLPWVnMoRKn5cdY4=

o
=
m

Newer versions do not require a license key.

At this point, you should be ready to see if the samples are working. Connect your Kinect to a USB
port and ensure that the power adapter is also plugged in.

Change the working directory to NITE Sample and execute one of the accompanying demos (Figure
7).

cd ~/Kinect/NITE/Samples/Bin/Release
sudo ./Sample-PointViewer

oBs MGk 15 2EN1 14|

Figure 1-7. NITE sample point viewer running on Ubuntu

TIP

If you are continuously running into the "InitFromXML failed: Failed to set USB Interface! Error," shown in Figure 1-8, try the
following (it solved my problem right away):

sudo rmmod gspca_kinect

jared@ubuntu-kinect-mchine:~/Kinect /OpenNI/Platform/LinuxS cd Bin/
jaredg@ubuntu-kinect-mchine:~/Kinect/OpenNI/Platform/Linux/BinS 1s

1

jaredgubuntu-kinect-mchine:~/Kinect /OpenNI/Platform/Linux/Bin$ cd x86-Release/
jared@ubuntu-kinect-mchine:-/Kinect/OpenNI/Platform/Linux/Bin/xB6-Releases 1s
libnimCodecs.so org.O0penNI.Samples.UserTracker
libnimMockMNodes.so
libnimRecorder.so sample-NiAudioSample
libOpenNI.jni.so Sample-NiBackRecorder
1ibOpenNI.so Sample-NiConvertXToONI
Libsample-NiSampleModule.so Sample-NLlCRead
nilLicense Sample-NiRecordSynthetic
niReg Sample-NisimpleCreate
Niviewer Sample-NiSimpleRead
OpenNI.net.dll Sample-NiSimpleViewer
Sample-NiUserTracker
org.OpenNL.Samples.SimpleRead SimpleRead.net.exe
SimpleViewer.net.exe
org.0penNl.Samples.SimplevViewer UserTracker.net.exe

jared@ubuntu-kinect-mchine:~/Kinect /OpenNI/Platform/Linux/Bin/x86-Releases sudo
. fHilViewer

Open Tailed: Failed to set USB interface!

Press any key to continue . .

Figure 1-8. OpenNI USB interface error

Install libfreenect for Mac OS X

For this guide, we will be using MacPorts to download and configure the libraries along with other
components. We’ll perform the majority of the work using the Terminal application located in your
Utilities directory: Applications/Utilities/Terminal. You will need to install Git to process the latest
repository builds from GitHub and install the libtool and libusb-devel libraries. You’ll need to issue
the following commands to download and install the prerequisites and dependencies for compiling
libfreenect:

sudo port install git-core
sudo port install
sudo port install libusb-devel

CAUTION

The sudo command requires the admin-level password for Mac, which grants you temporary root-level access.

You will also need to download and install CMake to compile libreenect. You can find the latest
version at http://www.cmake.org/cmake/resources/software.html. Create a directory from which you
would like to work. It can be named anything and placed anywhere. For the sake of simplicity, we wi

create the directory OpenKinect located in your Home directory.
cd ~/

mkdir OpenKinect
cd OpenKinect

Download the latest libfreenect repository using the git clone command in your current working
directory:

sudo git clone https://github.com/OpenKinect/libfreenect.git

Navigate to the libfreenect directory:

cd ~/OpenKinect/libfreenect
Create a new build directory, navigate into it, and compile the source code:

mkdir build
cd build
ccmake ..

When prompted, press the C key to begin compiling.

If the ccmake command fails, you will need to manually change the LIBUSB_1_INCLUDE_DIR patl
to usr/local/include/libusb-1.0.

Press C to restart the build.

Press the G key to generate and then type the following once everything has been completed:

ccmake ..

Once this process has completed and the cursor prompt has returned, run the following commands:

sudo make && sudo make install

The installation should be complete at this point. Navigate to the libfreenect/build/bin directory and
run the glview demo to see if things are working properly.

cd ~/1libfreenect/build/bin
sudo ./glview

Install libfreenect for Ubuntu

As with the Windows installation method described in Install OpenNI, SensorKinect, and NITE for
Windows 7, there is a binary package available for Ubuntu installations of OpenKinect that allows us
to easily install the drivers. You can find precompiled RPM and Deb packages by visiting
http://bit.ly/TIFy5x.

These packages are rather old, so if you run into any installation problems, skip to the next section,
which covers compiling libfreenect from source.

If you’re using a fresh install of Ubuntu, you’ll more than likely have to install quite a few
dependencies on your machine to get started. A quick way to get things moving is to manually instal
everything at once by issuing the following command:

sudo apt-get install git-core cmake freeglut3-dev \
pkg-config build-essential libxmu-dev 1libxi-dev libusb-1.0-0-dev

After the library dependencies have all been successfully installed, we can now move on to compilin
libfreenect from source. For the sake of this tutorial, I created a Kinect folder in my Home directory.
This is where we’ll place the extracted contents of libfreenect.

mkdir ~/Kinect
cd ~/Kinect

Download libfreenect using Git and then create and move into a build directory.
git clone https://github.com/OpenKinect/libfreenect.git

cd libfreenect
mkdir build

cd build
sudo cmake ..

Once CMake is done compiling, you can now run make and then make install.

sudo make
sudo make install

Then there’s one last command before we can run some of the sample demos.
sudo ldconfig /usr/local/lib64/

Navigate to bin inside the build directory and run the glview demo. Make sure your Kinect sensor is
connected via USB and that the power adapter is plugged in as well.

cd /libfreenect/build/bin
sudo ./glview

If glview opens properly, you should now be looking at the famous dual view of the RGB and depth
camera output that the Kinect is currently capturing. See Figure 1-9.

Figure 1-9. libfreenect glview sample for Ubuntu

Install libfreenect for Windows 7

Get ready for quite the ride if you’re interested in compiling and building libfreenect on a Windows
machine. It is by far the most involved process, requiring a lot of tinkering around with library
dependencies to properly compile and build libfreenect.

Before we get started, we’ll need to download and install CMake and Visual Studio 2010 from the

following places:

Visual C++ 2010 Express
http://www.microsoft.com/visualstudio/eng/downloads

CMake Windows Binary Installer
http://cmake.org/cmake/resources/software.html

Farther down the road, you’ll need to manually assign the path for certain library files and includes t
finish compiling libfreenect in CMake. I’ve added them all to a nice little ZIP file, which you can

sample content of Kinect Hacks: Tips & Tools for Motion and Pattern Detection

read Chicken Soup for the Teenage Soul: Stories of Life, Love and Learning
The One-Page Financial Plan: A Simple Way to Be Smart About Your Money pdf

read online Strangers on a Bridge: The Case of Colonel Abel and Francis Gary Powers
read online Kern and Burn: Conversations With Design Entrepreneurs

http://unpluggedtv.com/lib/Naturally-Healthy-Mexican-Cooking--Authentic-Recipes-for-

Dieters--Diabetics--and-All-Food-Lovers.pdf
http://thewun.org/?library/Programming-ASP-NET-3-5--4th-Edition-.pdf

http://redbuffalodesign.com/ebooks/Strangers-on-a-Bridge--The-Case-of-Colonel-Abel-and-

Francis-Gary-Powers.pdf
http://interactmg.com/ebooks/Dracula--British-Film-Guides--Volume-7-.pdf

http://unpluggedtv.com/lib/Naturally-Healthy-Mexican-Cooking--Authentic-Recipes-for-Dieters--Diabetics--and-All-Food-Lovers.pdf
http://thewun.org/?library/Programming-ASP-NET-3-5--4th-Edition-.pdf
http://redbuffalodesign.com/ebooks/Strangers-on-a-Bridge--The-Case-of-Colonel-Abel-and-Francis-Gary-Powers.pdf
http://interactmg.com/ebooks/Dracula--British-Film-Guides--Volume-7-.pdf
http://unpluggedtv.com/lib/Naturally-Healthy-Mexican-Cooking--Authentic-Recipes-for-Dieters--Diabetics--and-All-Food-Lovers.pdf
http://unpluggedtv.com/lib/Naturally-Healthy-Mexican-Cooking--Authentic-Recipes-for-Dieters--Diabetics--and-All-Food-Lovers.pdf
http://thewun.org/?library/Programming-ASP-NET-3-5--4th-Edition-.pdf
http://redbuffalodesign.com/ebooks/Strangers-on-a-Bridge--The-Case-of-Colonel-Abel-and-Francis-Gary-Powers.pdf
http://redbuffalodesign.com/ebooks/Strangers-on-a-Bridge--The-Case-of-Colonel-Abel-and-Francis-Gary-Powers.pdf
http://interactmg.com/ebooks/Dracula--British-Film-Guides--Volume-7-.pdf
http://www.tcpdf.org

