

LINUX
System Programming

Other Linux resources from O’Reilly

Related titles Building Embedded Linux
Systems

Designing Embedded
Hardware

Linux Device Drivers

Linux Kernel in a Nutshell

Programming Embedded
Systems

Running Linux

Understanding Linux
Network Internals

Understanding the Linux
Kernel

Linux Books
Resource Center

linux.oreilly.com is a complete catalog of O’Reilly’s books on
Linux and Unix and related technologies, including sample
chapters and code examples.

ONLamp.com is the premier site for the open source web plat-
form: Linux, Apache, MySQL and either Perl, Python, or PHP.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

LINUX
System Programming

Robert Love

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Linux System Programming
by Robert Love

Copyright © 2007 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Sumita Mukherji
Copyeditor: Rachel Head
Proofreader: Sumita Mukherji

Indexer: John Bickelhaupt
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Jessamyn Read

Printing History:

September 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Linux series designations, Linux System Programming, images of the man in
the flying machine, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-00958-5
ISBN-13: 978-0-596-00958-8

[M]

v

Table of Contents

Foreword . ix

Preface . xi

1. Introduction and Essential Concepts . 1
System Programming 1
APIs and ABIs 4
Standards 6
Concepts of Linux Programming 9
Getting Started with System Programming 22

2. File I/O . 23
Opening Files 24
Reading via read() 29
Writing with write() 33
Synchronized I/O 37
Direct I/O 40
Closing Files 41
Seeking with lseek() 42
Positional Reads and Writes 44
Truncating Files 45
Multiplexed I/O 47
Kernel Internals 57
Conclusion 61

vi | Table of Contents

3. Buffered I/O . 62
User-Buffered I/O 62
Standard I/O 64
Opening Files 65
Opening a Stream via File Descriptor 66
Closing Streams 67
Reading from a Stream 67
Writing to a Stream 70
Sample Program Using Buffered I/O 72
Seeking a Stream 74
Flushing a Stream 75
Errors and End-of-File 76
Obtaining the Associated File Descriptor 77
Controlling the Buffering 77
Thread Safety 79
Critiques of Standard I/O 81
Conclusion 82

4. Advanced File I/O . 83
Scatter/Gather I/O 84
The Event Poll Interface 89
Mapping Files into Memory 95
Advice for Normal File I/O 108
Synchronized, Synchronous, and Asynchronous Operations 111
I/O Schedulers and I/O Performance 114
Conclusion 125

5. Process Management . 126
The Process ID 126
Running a New Process 129
Terminating a Process 136
Waiting for Terminated Child Processes 139
Users and Groups 149
Sessions and Process Groups 154
Daemons 159
Conclusion 161

Table of Contents | vii

6. Advanced Process Management . 162
Process Scheduling 162
Yielding the Processor 166
Process Priorities 169
Processor Affinity 172
Real-Time Systems 176
Resource Limits 190

7. File and Directory Management . 196
Files and Their Metadata 196
Directories 212
Links 223
Copying and Moving Files 228
Device Nodes 231
Out-of-Band Communication 233
Monitoring File Events 234

8. Memory Management . 243
The Process Address Space 243
Allocating Dynamic Memory 245
Managing the Data Segment 255
Anonymous Memory Mappings 256
Advanced Memory Allocation 260
Debugging Memory Allocations 263
Stack-Based Allocations 264
Choosing a Memory Allocation Mechanism 268
Manipulating Memory 269
Locking Memory 273
Opportunistic Allocation 277

9. Signals . 279
Signal Concepts 280
Basic Signal Management 286
Sending a Signal 291
Reentrancy 293
Signal Sets 295
Blocking Signals 296

viii | Table of Contents

Advanced Signal Management 298
Sending a Signal with a Payload 305
Conclusion 306

10. Time . 308
Time’s Data Structures 310
POSIX Clocks 313
Getting the Current Time of Day 315
Setting the Current Time of Day 318
Playing with Time 320
Tuning the System Clock 321
Sleeping and Waiting 324
Timers 330

Appendix. GCC Extensions to the C Language . 339

Bibliography . 351

Index . 355

ix

Foreword

There is an old line that Linux kernel developers like to throw out when they are feel-
ing grumpy: “User space is just a test load for the kernel.”

By muttering this line, the kernel developers aim to wash their hands of all responsi-
bility for any failure to run user-space code as well as possible. As far as they’re
concerned, user-space developers should just go away and fix their own code, as any
problems are definitely not the kernel’s fault.

To prove that it usually is not the kernel that is at fault, one leading Linux kernel
developer has been giving a “Why User Space Sucks” talk to packed conference
rooms for more than three years now, pointing out real examples of horrible user-
space code that everyone relies on every day. Other kernel developers have created
tools that show how badly user-space programs are abusing the hardware and drain-
ing the batteries of unsuspecting laptops.

But while user-space code might be just a “test load” for kernel developers to scoff
at, it turns out that all of these kernel developers also depend on that user-space code
every day. If it weren’t present, all the kernel would be good for would be to print
out alternating ABABAB patterns on the screen.

Right now, Linux is the most flexible and powerful operating system that has ever
been created, running everything from the tiniest cell phones and embedded devices
to more than 70 percent of the world’s top 500 supercomputers. No other operating
system has ever been able to scale so well and meet the challenges of all of these dif-
ferent hardware types and environments.

And along with the kernel, code running in user space on Linux can also operate on
all of those platforms, providing the world with real applications and utilities people
rely on.

In this book, Robert Love has taken on the unenviable task of teaching the reader
about almost every system call on a Linux system. In so doing, he has produced a
tome that will allow you to fully understand how the Linux kernel works from a
user-space perspective, and also how to harness the power of this system.

x | Foreword

The information in this book will show you how to create code that will run on all of
the different Linux distributions and hardware types. It will allow you to understand
how Linux works and how to take advantage of its flexibility.

In the end, this book teaches you how to write code that doesn't suck, which is the
best thing of all.

—Greg Kroah-Hartman

xi

Preface

This book is about system programming—specifically, system programming on
Linux. System programming is the practice of writing system software, which is code
that lives at a low level, talking directly to the kernel and core system libraries. Put
another way, the topic of the book is Linux system calls and other low-level func-
tions, such as those defined by the C library.

While many books cover system programming for Unix systems, few tackle the sub-
ject with a focus solely on Linux, and fewer still (if any) address the very latest Linux
releases and advanced Linux-only interfaces. Moreover, this book benefits from a
special touch: I have written a lot of code for Linux, both for the kernel and for sys-
tem software built thereon. In fact, I have implemented some of the system calls and
other features covered in this book. Consequently, this book carries a lot of insider
knowledge, covering not just how the system interfaces should work, but how they
actually work, and how you (the programmer) can use them most efficiently. This
book, therefore, combines in a single work a tutorial on Linux system programming,
a reference manual covering the Linux system calls, and an insider’s guide to writing
smarter, faster code. The text is fun and accessible, and regardless of whether you
code at the system level on a daily basis, this book will teach you tricks that will
enable you to write better code.

Audience and Assumptions
The following pages assume that the reader is familiar with C programming and the
Linux programming environment—not necessarily well-versed in the subjects, but at
least acquainted with them. If you have not yet read any books on the C program-
ming language, such as the classic Brian W. Kernighan and Dennis M. Ritchie work
The C Programming Language (Prentice Hall; the book is familiarly known as K&R),
I highly recommend you check one out. If you are not comfortable with a Unix text
editor—Emacs and vim being the most common and highly regarded—start playing

xii | Preface

with one. You’ll also want to be familiar with the basics of using gcc, gdb, make, and
so on. Plenty of other books on tools and practices for Linux programming are out
there; the bibliography at the end of this book lists several useful references.

I’ve made few assumptions about the reader’s knowledge of Unix or Linux system
programming. This book will start from the ground up, beginning with the basics,
and winding its way up to the most advanced interfaces and optimization tricks.
Readers of all levels, I hope, will find this work worthwhile and learn something
new. In the course of writing the book, I certainly did.

Nor do I make assumptions about the persuasion or motivation of the reader.
Engineers wishing to program (better) at a low level are obviously targeted, but
higher-level programmers looking for a stronger standing on the foundations on
which they rest will also find a lot to interest them. Simply curious hackers are also
welcome, for this book should satiate their hunger, too. Whatever readers want and
need, this book should cast a net wide enough—as least as far as Linux system pro-
gramming is concerned—to satisfy them.

Regardless of your motives, above all else, have fun.

Contents of This Book
This book is broken into 10 chapters, an appendix, and a bibliography.

Chapter 1, Introduction and Essential Concepts
This chapter serves as an introduction, providing an overview of Linux, system
programming, the kernel, the C library, and the C compiler. Even advanced
users should visit this chapter—trust me.

Chapter 2, File I/O
This chapter introduces files, the most important abstraction in the Unix envi-
ronment, and file I/O, the basis of the Linux programming mode. This chapter
covers reading from and writing to files, along with other basic file I/O operations.
The chapter culminates with a discussion on how the Linux kernel implements and
manages files.

Chapter 3, Buffered I/O
This chapter discusses an issue with the basic file I/O interfaces—buffer size
management—and introduces buffered I/O in general, and standard I/O in par-
ticular, as solutions.

Chapter 4, Advanced File I/O
This chapter completes the I/O troika with a treatment on advanced I/O inter-
faces, memory mappings, and optimization techniques. The chapter is capped with
a discussion on avoiding seeks, and the role of the Linux kernel’s I/O scheduler.

Preface | xiii

Chapter 5, Process Management
This chapter introduces Unix’s second most important abstraction, the process,
and the family of system calls for basic process management, including the ven-
erable fork.

Chapter 6, Advanced Process Management
This chapter continues the treatment with a discussion of advanced process
management, including real-time processes.

Chapter 7, File and Directory Management
This chapter discusses creating, moving, copying, deleting, and otherwise man-
aging files and directories.

Chapter 8, Memory Management
This chapter covers memory management. It begins by introducing Unix con-
cepts of memory, such as the process address space and the page, and continues
with a discussion of the interfaces for obtaining memory from and returning
memory to the kernel. The chapter concludes with a treatment on advanced
memory-related interfaces.

Chapter 9, Signals
This chapter covers signals. It begins with a discussion of signals and their role
on a Unix system. It then covers signal interfaces, starting with the basic, and
concluding with the advanced.

Chapter 10, Time
This chapter discusses time, sleeping, and clock management. It covers the basic
interfaces up through POSIX clocks and high-resolution timers.

Appendix, GCC Extensions to the C Language
The Appendix reviews many of the optimizations provided by gcc and GNU C,
such as attributes for marking a function constant, pure, and inline.

The book concludes with a bibliography of recommended reading, listing both use-
ful supplements to this work, and books that address prerequisite topics not covered
herein.

Versions Covered in This Book
The Linux system interface is definable as the application binary interface and appli-
cation programming interface provided by the triplet of the Linux kernel (the heart
of the operating system), the GNU C library (glibc), and the GNU C Compiler (gcc—
now formally called the GNU Compiler Collection, but we are concerned only with
C). This book covers the system interface defined by Linux kernel version 2.6.22,
glibc version 2.5, and gcc version 4.2. Interfaces in this book should be backward
compatible with older versions (excluding new interfaces), and forward compatible
to newer versions.

xiv | Preface

If any evolving operating system is a moving target, Linux is a rabid cheetah.
Progress is measured in days, not years, and frequent releases of the kernel and other
components constantly morph the playing field. No book can hope to capture such a
dynamic beast in a timeless fashion.

Nonetheless, the programming environment defined by system programming is set in
stone. Kernel developers go to great pains not to break system calls, the glibc devel-
opers highly value forward and backward compatibility, and the Linux toolchain
generates compatible code across versions (particularly for the C language). Conse-
quently, while Linux may be constantly on the go, Linux system programming
remains stable, and a book based on a snapshot of the system, especially at this point
in Linux’s development, has immense staying power. What I am trying to say is sim-
ple: don’t worry about system interfaces changing, and buy this book!

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Used for emphasis, new terms, URLs, foreign phrases, Unix commands and util-
ities, filenames, directory names, and pathnames.

Constant width
Indicates header files, variables, attributes, functions, types, parameters, objects,
macros, and other programming constructs.

Constant width italic
Indicates text (for example, a pathname component) to be replaced with a user-
supplied value.

This icon signifies a tip, suggestion, or general note.

Most of the code in this book is in the form of brief, but usable, code snippets. They
look like this:

while (1) {
 int ret;

 ret = fork ();
 if (ret == -1)
 perror ("fork");
}

Great pains have been taken to provide code snippets that are concise but usable. No
special header files, full of crazy macros and illegible shortcuts, are required. Instead
of building a few gigantic programs, this book is filled with many simple examples.

Preface | xv

As the examples are descriptive and fully usable, yet small and clear, I hope they will
provide a useful tutorial on the first read, and remain a good reference on subse-
quent passes.

Nearly all of the examples in this book are self-contained. This means you can easily
copy them into your text editor, and put them to actual use. Unless otherwise men-
tioned, all of the code snippets should build without any special compiler flags. (In a
few cases, you need to link with a special library.) I recommend the following com-
mand to compile a source file:

$ gcc -Wall -Wextra -O2 -g -o snippet snippet.c

This compiles the source file snippet.c into the executable binary snippet, enabling
many warning checks, significant but sane optimizations, and debugging. The code
in this book should compile using this command without errors or warnings—
although of course, you might have to build a skeleton program around the snippet
first.

When a section introduces a new function, it is in the usual Unix manpage format
with a special emphasized font, which looks like this:

#include <fcntl.h>

int posix_fadvise (int fd, off_t pos, off_t len, int advice);

The required headers, and any needed definitions, are at the top, followed by a full
prototype of the call.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you are reproducing a significant portion of the code. For exam-
ple, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting

xvi | Preface

example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate attribution. An attribution usually includes the title, author, pub-
lisher, and ISBN. For example: “Linux System Programming by Robert Love. Copy-
right 2007 O’Reilly Media, Inc., 978-0-596-00958-8.”

If you believe that your use of code examples falls outside of fair use or the permis-
sion given above, feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at this address:

http://www.oreilly.com/catalog/9780596009588/

To comment or ask technical questions about this book, you can send an email to
the following address:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at this address:

http://www.oreilly.com

Acknowledgments
Many hearts and minds contributed to the completion of this manuscript. While no
list would be complete, it is my sincere pleasure to acknowledge the assistance and
friendship of individuals who provided encouragement, knowledge, and support
along the way.

Andy Oram is a phenomenal editor and human being. This effort would have been
impossible without his hard work. A rare breed, Andy couples deep technical knowl-
edge with a poetic command of the English language.

Preface | xvii

Brian Jepson served brilliantly as editor for a period, and his sterling efforts continue
to reverberate throughout this work as well.

This book was blessed with phenomenal technical reviewers, true masters of their
craft, without whom this work would pale in comparison to the final product you
now read. The technical reviewers were Robert Day, Jim Lieb, Chris Rivera, Joey
Shaw, and Alain Williams. Despite their toils, any errors remain my own.

Rachel Head performed flawlessly as copyeditor. In her aftermath, red ink decorated
my written word—readers will certainly appreciate her corrections.

For numerous reasons, thanks and respect to Paul Amici, Mikey Babbitt, Keith Bar-
bag, Jacob Berkman, Dave Camp, Chris DiBona, Larry Ewing, Nat Friedman, Albert
Gator, Dustin Hall, Joyce Hawkins, Miguel de Icaza, Jimmy Krehl, Greg Kroah-
Hartman, Doris Love, Jonathan Love, Linda Love, Tim O’Reilly, Aaron Matthews,
John McCain, Randy O’Dowd, Salvatore Ribaudo and family, Chris Rivera, Joey
Shaw, Sarah Stewart, Peter Teichman, Linus Torvalds, Jon Trowbridge, Jeremy Van-
Doren and family, Luis Villa, Steve Weisberg and family, and Helen Whisnant.

Final thanks to my parents, Bob and Elaine.

—Robert Love
Boston

1

Chapter 1 CHAPTER 1

Introduction and Essential
Concepts

This book is about system programming, which is the art of writing system software.
System software lives at a low level, interfacing directly with the kernel and core
system libraries. System software includes your shell and your text editor, your com-
piler and your debugger, your core utilities and system daemons. These components
are entirely system software, based on the kernel and the C library. Much other soft-
ware (such as high-level GUI applications) lives mostly in the higher levels, delving
into the low level only on occasion, if at all. Some programmers spend all day every
day writing system software; others spend only part of their time on this task. There
is no programmer, however, who does not benefit from some understanding of
system programming. Whether it is the programmer’s raison d’être, or merely a foun-
dation for higher-level concepts, system programming is at the heart of all software
that we write.

In particular, this book is about system programming on Linux. Linux is a modern
Unix-like system, written from scratch by Linus Torvalds, and a loose-knit commu-
nity of hackers around the globe. Although Linux shares the goals and ideology of
Unix, Linux is not Unix. Instead, Linux follows its own course, diverging where
desired, and converging only where practical. Generally, the core of Linux system
programming is the same as on any other Unix system. Beyond the basics, however,
Linux does well to differentiate itself—in comparison with traditional Unix systems,
Linux is rife with additional system calls, different behavior, and new features.

System Programming
Traditionally speaking, all Unix programming is system-level programming. Histori-
cally, Unix systems did not include many higher-level abstractions. Even programming
in a development environment such as the X Window System exposed in full view the
core Unix system API. Consequently, it can be said that this book is a book on Linux

2 | Chapter 1: Introduction and Essential Concepts

programming in general. But note that this book does not cover the Linux
programming environment—there is no tutorial on make in these pages. What is cov-
ered is the system programming API exposed on a modern Linux machine.

System programming is most commonly contrasted with application programming.
System-level and application-level programming differ in some aspects, but not in
others. System programming is distinct in that system programmers must have a
strong awareness of the hardware and operating system on which they are working.
Of course, there are also differences between the libraries used and calls made.
Depending on the “level” of the stack at which an application is written, the two may
not actually be very interchangeable, but, generally speaking, moving from applica-
tion programming to system programming (or vice versa) is not hard. Even when the
application lives very high up the stack, far from the lowest levels of the system,
knowledge of system programming is important. And the same good practices are
employed in all forms of programming.

The last several years have witnessed a trend in application programming away from
system-level programming and toward very high-level development, either through
web software (such as JavaScript or PHP), or through managed code (such as C# or
Java). This development, however, does not foretell the death of system program-
ming. Indeed, someone still has to write the JavaScript interpreter and the C#
runtime, which is itself system programming. Furthermore, the developers writing
PHP or Java can still benefit from knowledge of system programming, as an under-
standing of the core internals allows for better code no matter where in the stack the
code is written.

Despite this trend in application programming, the majority of Unix and Linux code
is still written at the system level. Much of it is C, and subsists primarily on interfaces
provided by the C library and the kernel. This is traditional system programming—
Apache, bash, cp, Emacs, init, gcc, gdb, glibc, ls, mv, vim, and X. These applications
are not going away anytime soon.

The umbrella of system programming often includes kernel development, or at least
device driver writing. But this book, like most texts on system programming, is
unconcerned with kernel development. Instead, it focuses on user-space system-level
programming; that is, everything above the kernel (although knowledge of kernel
internals is a useful adjunct to this text). Likewise, network programming—sockets
and such—is not covered in this book. Device driver writing and network program-
ming are large, expansive topics, best tackled in books dedicated to the subject.

What is the system-level interface, and how do I write system-level applications in
Linux? What exactly do the kernel and the C library provide? How do I write opti-
mal code, and what tricks does Linux provide? What neat system calls are provided
in Linux compared to other Unix variants? How does it all work? Those questions
are at the center of this book.

There are three cornerstones to system programming in Linux: system calls, the C
library, and the C compiler. Each deserves an introduction.

System Programming | 3

System Calls
System programming starts with system calls. System calls (often shorted to syscalls)
are function invocations made from user space—your text editor, favorite game, and so
on—into the kernel (the core internals of the system) in order to request some service
or resource from the operating system. System calls range from the familiar, such as
read() and write(), to the exotic, such as get_thread_area() and set_tid_address().

Linux implements far fewer system calls than most other operating system kernels.
For example, a count of the i386 architecture’s system calls comes in at around 300,
compared with the allegedly thousands of system calls on Microsoft Windows. In the
Linux kernel, each machine architecture (such as Alpha, i386, or PowerPC) imple-
ments its own list of available system calls. Consequently, the system calls available
on one architecture may differ from those available on another. Nonetheless, a very
large subset of system calls—more than 90 percent—is implemented by all architec-
tures. It is this shared subset, these common interfaces, that I cover in this book.

Invoking system calls

It is not possible to directly link user-space applications with kernel space. For rea-
sons of security and reliability, user-space applications must not be allowed to
directly execute kernel code or manipulate kernel data. Instead, the kernel must pro-
vide a mechanism by which a user-space application can “signal” the kernel that it
wishes to invoke a system call. The application can then trap into the kernel through
this well-defined mechanism, and execute only code that the kernel allows it to exe-
cute. The exact mechanism varies from architecture to architecture. On i386, for
example, a user-space application executes a software interrupt instruction, int, with
a value of 0x80. This instruction causes a switch into kernel space, the protected
realm of the kernel, where the kernel executes a software interrupt handler—and
what is the handler for interrupt 0x80? None other than the system call handler!

The application tells the kernel which system call to execute and with what parame-
ters via machine registers. System calls are denoted by number, starting at 0. On the
i386 architecture, to request system call 5 (which happens to be open()), the user-
space application stuffs 5 in register eax before issuing the int instruction.

Parameter passing is handled in a similar manner. On i386, for example, a register is
used for each possible parameter—registers ebx, ecx, edx, esi, and edi contain, in
order, the first five parameters. In the rare event of a system call with more than five
parameters, a single register is used to point to a buffer in user space where all of the
parameters are kept. Of course, most system calls have only a couple of parameters.

Other architectures handle system call invocation differently, although the spirit is
the same. As a system programmer, you usually do not need any knowledge of how
the kernel handles system call invocation. That knowledge is encoded into the stan-
dard calling conventions for the architecture, and handled automatically by the
compiler and the C library.

4 | Chapter 1: Introduction and Essential Concepts

The C Library
The C library (libc) is at the heart of Unix applications. Even when you’re programming
in another language, the C library is most likely in play, wrapped by the higher-level
libraries, providing core services, and facilitating system call invocation. On modern
Linux systems, the C library is provided by GNU libc, abbreviated glibc, and pro-
nounced gee-lib-see or, less commonly, glib-see.

The GNU C library provides more than its name suggests. In addition to implement-
ing the standard C library, glibc provides wrappers for system calls, threading
support, and basic application facilities.

The C Compiler
In Linux, the standard C compiler is provided by the GNU Compiler Collection (gcc).
Originally, gcc was GNU’s version of cc, the C Compiler. Thus, gcc stood for GNU C
Compiler. Over time, support was added for more and more languages. Conse-
quently, nowadays gcc is used as the generic name for the family of GNU compilers.
However, gcc is also the binary used to invoke the C compiler. In this book, when I
talk of gcc, I typically mean the program gcc, unless context suggests otherwise.

The compiler used in a Unix system—Linux included—is highly relevant to system
programming, as the compiler helps implement the C standard (see “C Language
Standards”) and the system ABI (see “APIs and ABIs”), both later in this chapter.

APIs and ABIs
Programmers are naturally interested in ensuring their programs run on all of the sys-
tems that they have promised to support, now and in the future. They want to feel
secure that programs they write on their Linux distributions will run on other Linux
distributions, as well as on other supported Linux architectures and newer (or ear-
lier) Linux versions.

At the system level, there are two separate sets of definitions and descriptions that
impact portability. One is the application programming interface (API), and the other
is the application binary interface (ABI). Both define and describe the interfaces
between different pieces of computer software.

APIs
An API defines the interfaces by which one piece of software communicates with
another at the source level. It provides abstraction by providing a standard set of
interfaces—usually functions—that one piece of software (typically, although not

APIs and ABIs | 5

necessarily, a higher-level piece) can invoke from another piece of software (usually a
lower-level piece). For example, an API might abstract the concept of drawing text
on the screen through a family of functions that provide everything needed to draw
the text. The API merely defines the interface; the piece of software that actually pro-
vides the API is known as the implementation of the API.

It is common to call an API a “contract.” This is not correct, at least in the legal sense
of the term, as an API is not a two-way agreement. The API user (generally, the
higher-level software) has zero input into the API and its implementation. It may use
the API as-is, or not use it at all: take it or leave it! The API acts only to ensure that if
both pieces of software follow the API, they are source compatible; that is, that the
user of the API will successfully compile against the implementation of the API.

A real-world example is the API defined by the C standard and implemented by the
standard C library. This API defines a family of basic and essential functions, such as
string-manipulation routines.

Throughout this book, we will rely on the existence of various APIs, such as the stan-
dard I/O library discussed in Chapter 3. The most important APIs in Linux system
programming are discussed in the section “Standards” later in this chapter.

ABIs
Whereas an API defines a source interface, an ABI defines the low-level binary inter-
face between two or more pieces of software on a particular architecture. It defines
how an application interacts with itself, how an application interacts with the kernel,
and how an application interacts with libraries. An ABI ensures binary compatibility,
guaranteeing that a piece of object code will function on any system with the same
ABI, without requiring recompilation.

ABIs are concerned with issues such as calling conventions, byte ordering, register
use, system call invocation, linking, library behavior, and the binary object format.
The calling convention, for example, defines how functions are invoked, how argu-
ments are passed to functions, which registers are preserved and which are mangled,
and how the caller retrieves the return value.

Although several attempts have been made at defining a single ABI for a given archi-
tecture across multiple operating systems (particularly for i386 on Unix systems), the
efforts have not met with much success. Instead, operating systems—Linux
included—tend to define their own ABIs however they see fit. The ABI is intimately
tied to the architecture; the vast majority of an ABI speaks of machine-specific
concepts, such as particular registers or assembly instructions. Thus, each machine
architecture has its own ABI on Linux. In fact, we tend to call a particular ABI by its
machine name, such as alpha, or x86-64.

sample content of Linux System Programming: Talking Directly to the Kernel and C Library

Freedomland pdf, azw (kindle), epub
read online The Major Film Theories: An Introduction pdf
Well Fed: Paleo Recipes for People Who Love to Eat here
download online Freezing People Is (Not) Easy: My Adventures in Cryonics
Reading in the Brain: The Science and Evolution of a Human Invention pdf, azw (kindle)
download online Millennial Monsters: Japanese Toys and the Global Imagination

http://twilightblogs.com/library/Best--Boy-friend-Forever--Camp-Confidential--Book-9-.pdf
http://qolorea.com/library/English-Vocabulary-in-Use-Advanced-with-Answers.pdf
http://test1.batsinbelfries.com/ebooks/Well-Fed--Paleo-Recipes-for-People-Who-Love-to-
Eat.pdf
http://www.satilik-kopek.com/library/Kitchen-Simple--Essential-Recipes-for-Everyday-
Cooking.pdf
http://kamallubana.com/?library/The-Little-Prover.pdf
http://fitnessfatale.com/freebooks/Millennial-Monsters--Japanese-Toys-and-the-Global-
Imagination.pdf

Powered by TCPDF (www.tcpdf.org)

http://twilightblogs.com/library/Best--Boy-friend-Forever--Camp-Confidential--Book-9-.pdf
http://qolorea.com/library/English-Vocabulary-in-Use-Advanced-with-Answers.pdf
http://test1.batsinbelfries.com/ebooks/Well-Fed--Paleo-Recipes-for-People-Who-Love-to-Eat.pdf
http://www.satilik-kopek.com/library/Kitchen-Simple--Essential-Recipes-for-Everyday-Cooking.pdf
http://kamallubana.com/?library/The-Little-Prover.pdf
http://fitnessfatale.com/freebooks/Millennial-Monsters--Japanese-Toys-and-the-Global-Imagination.pdf
http://twilightblogs.com/library/Best--Boy-friend-Forever--Camp-Confidential--Book-9-.pdf
http://qolorea.com/library/English-Vocabulary-in-Use-Advanced-with-Answers.pdf
http://test1.batsinbelfries.com/ebooks/Well-Fed--Paleo-Recipes-for-People-Who-Love-to-Eat.pdf
http://test1.batsinbelfries.com/ebooks/Well-Fed--Paleo-Recipes-for-People-Who-Love-to-Eat.pdf
http://www.satilik-kopek.com/library/Kitchen-Simple--Essential-Recipes-for-Everyday-Cooking.pdf
http://www.satilik-kopek.com/library/Kitchen-Simple--Essential-Recipes-for-Everyday-Cooking.pdf
http://kamallubana.com/?library/The-Little-Prover.pdf
http://fitnessfatale.com/freebooks/Millennial-Monsters--Japanese-Toys-and-the-Global-Imagination.pdf
http://fitnessfatale.com/freebooks/Millennial-Monsters--Japanese-Toys-and-the-Global-Imagination.pdf
http://www.tcpdf.org

