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Do you struggle to write programs, even 
though you think you understand program-

ming languages? Are you able to read through 
a chapter in a programming book, nodding 

your head the whole way, but unable to apply what 
you’ve read to your own programs? Are you able to
comprehend a program example you’ve read online, even to the point where 
you could explain to someone else what each line of the code is doing, 
yet you feel your brain seize up when faced with a programming task and a 
blank screen in your text editor?

You’re not alone. I have taught programming for over 15 years, and most 
of my students would have fit this description at some point in their instruc-
tion. We will call the missing skill problem solving, the ability to take a given 
problem description and write an original program to solve it. Not all pro-
gramming requires extensive problem solving. If you’re just making minor 
modifications to an existing program, debugging, or adding testing code, the 
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programming may be so mechanical in nature that your creativity is never 
tested. But all programs require problem solving at some point, and all good 
programmers can solve problems.

Problem solving is hard. It’s true that a few people make it look easy—
the “naturals,” the programming world’s equivalent of a gifted athlete, like 
Michael Jordan. For these select few, high-level ideas are effortlessly translated 
into source code. To make a Java metaphor, it’s as if their brains execute Java 
natively, while the rest of us have to run a virtual machine, interpreting as we go.

Not being a natural isn’t fatal to becoming a programmer—if it were, the 
world would have few programmers. Yet I’ve seen too many worthy learners 
struggle too long in frustration. In the worst cases, they give up programming 
entirely, convinced that they can never be programmers, that the only good 
programmers are those born with an innate gift. 

Why is learning to solve programming problems so hard? 
In part, it’s because problem solving is a different activity from learning 

programming syntax and therefore uses a different set of mental “muscles.” 
Learning programming syntax, reading programs, memorizing elements of 
an application programming interface—these are mostly analytical “left brain” 
activities. Writing an original program using previously learned tools and 
skills is a creative “right brain” activity. 

Suppose you need to remove a branch that has fallen into one of the rain 
gutters on your house, but your ladder isn’t quite long enough for you to 
reach the branch. You head into your garage and look for something, or a 
combination of things, that will enable you to remove the branch from the 
gutter. Is there some way to extend the ladder? Is there something you can 
hold at the top of the ladder to grab or dislodge the branch? Maybe you could 
just get on the roof from another place and get the branch from above. That’s 
problem solving, and it’s a creative activity. Believe it or not, when you design 
an original program, your mental process is quite similar to that of the person 
figuring out how to remove the branch from the gutter and quite different 
from that of a person debugging an existing for loop.

Most programming books, though, focus their attention on syntax and 
semantics. Learning the syntax and semantics of a programming language is 
essential, but it’s only the first step in learning how to program in that lan-
guage. In essence, most programming books for beginners teach how to read 
a program, not how to write one. Books that do focus on writing are often 
effectively “cookbooks” in that they teach specific “recipes” for use in particu-
lar situations. Such books can be quite valuable as time savers, but not as a 
path toward learning to write original code. Think about cookbooks in the 
original sense. Although great cooks own cookbooks, no one who relies upon 
cookbooks can be a great cook. A great cook understands ingredients, prepa-
ration methods, and cooking methods and knows how they can be combined 
to make great meals. All a great cook needs to produce a tasty meal is a fully 
stocked kitchen. In the same way, a great programmer understands language 
syntax, application frameworks, algorithms, and software engineering princi-
ples and knows how they can be combined to make great programs. Give a 
great programmer a list of specifications, turn him loose with a fully stocked 
programming environment, and great things will happen.



 

In t roduct ion xv

In general, current programming education doesn’t offer much guidance 
in the area of problem solving. Instead, it’s assumed that if programmers are 
given access to all of the tools of programming and requested to write enough 
programs, eventually they will learn to write such programs and write them 
well. There is truth in this, but “eventually” can be a long time. The journey 
from initiation to enlightenment can be filled with frustration, and too many 
who start the journey never reach the destination.

Instead of learning by trial and error, you can learn problem solving in a 
systematic way. That’s what this book is all about. You can learn techniques to 
organize your thoughts, procedures to discover solutions, and strategies to 
apply to certain classes of problems. By studying these approaches, you can 
unlock your creativity. Make no mistake: Programming, and especially prob-
lem solving, is a creative activity. Creativity is mysterious, and no one can say 
exactly how the creative mind functions. Yet, if we can learn music composi-
tion, take advice on creative writing, or be shown how to paint, then we can 
learn to creatively solve programming problems, too. This book isn’t going 
to tell you precisely what to do; it’s going to help you develop your latent 
problem-solving abilities so that you will know what you should do. This book 
is about helping you become the programmer you are meant to be. 

My goal is for you and every other reader of this book to learn to system-
atically approach every programming task and to have the confidence that 
you will ultimately solve a given problem. When you complete this book, I 
want you to think like a programmer and to believe that you are a programmer.

About This Book

Having explained the necessity of this book, I need to make a few comments 
about what this book is and what it is not.

Prerequisites

This book assumes you are already familiar with the basic syntax and seman-
tics of the C++ language and that you have begun writing programs. Most of 
the chapters will expect you to know specific C++ fundamentals; these chap-
ters will begin with a review of those fundamentals. If you are still absorbing 
language basics, don’t worry. There are plenty of great books on C++ syntax, 
and you can learn problem solving in parallel to learning syntax. Just make 
sure you have studied the relevant syntax before attempting to tackle a chap-
ter’s problems.

Chosen Topics

The topics covered in this book represent areas in which I have most often 
seen new programmers struggle. They also present a broad cross-section of 
different areas in early and intermediate programming.

I should emphasize, however, that this is not a “cookbook” of algorithms 
or patterns for solving specific problems. Although later chapters discuss 
how to employ well-known algorithms or patterns, you should not use this 
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book as a “crib sheet” to get you past particular problems or focus on just the 
chapters that directly relate to your current struggles. Instead, I would work 
through the entire book, skipping material only if you lack the prerequisites 
needed to follow the discussion.

Programming Style

A quick note here about the programming style employed in this book: This 
book is not about high-performance programming or running the most com-
pact, efficient code. The style I have chosen for the source code examples is 
intended to be readable above all other considerations. In some cases, I take 
multiple steps to accomplish something that could be done in one step, just so 
the principle I’m trying to demonstrate is made clear.

Some aspects of programming style will be covered in this book—but 
larger issues, like what should or should not be included in a class, not small 
issues, like how code should be indented. As a developing programmer, you 
will of course want to employ a consistent, readable style in all of the work 
you do.

Exercises

The book includes a number of programming exercises. This is not a text-
book, and you won’t find answers to any of the exercises in the back. The 
exercises provide opportunities for you to apply the concepts described in 
the chapters. Whether you choose to try any of the exercises is, of course, up 
to you, but it is essential that you put these concepts into practice. Simply 
reading through the book will accomplish nothing. Remember that this book 
is not going to tell you exactly what to do in each situation. In applying the 
techniques shown in this book, you will develop your own ability to discover 
what to do. Furthermore, growing your confidence, another primary goal of 
this book, requires success. In fact, that’s a good way to know when you have 
worked through enough exercises in a given problem area: when you are con-
fident that you can tackle other problems in the area. Lastly, programming 
exercises should be fun. While there may be moments where you’d rather be 
doing something else, working out a programming problem should be a 
rewarding challenge.

You should think of this book as an obstacle course for your brain. Obstacle 
courses build strength, stamina, and agility and give the trainer confidence. 
By reading through the chapters and applying the concepts to as many exer-
cises as you can, you’re going to build confidence and develop problem-solving 
skills that can be used in any programming situation. In the future, when you 
are faced with a difficult problem, you’ll know whether you should try going 
over, under, or through it.
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Why C++?

The programming examples in this text are coded using C++. Having said 
that, this book is about solving problems with programs, not specifically 
about C++. You won’t find many tips and tricks specific to C++ here, and the 
general concepts taught throughout this book can be employed in any pro-
gramming language. Nevertheless, you can’t discuss programming without 
discussing programs, and a specific language had to be chosen.

C++ was selected for a number of reasons. First, it’s popular in a variety 
of problem areas. Second, because of its origins in the strictly procedural C 
language, C++ code can be written using both the procedural and object-
oriented paradigms. Object-oriented programming is so common now that it 
could not be omitted from a discussion on problem solving, but many funda-
mental problem-solving concepts can be discussed in strictly procedural 
programming terms, and doing so simplifies both the code and the discus-
sion. Third, as a low-level language with high-level libraries, C++ allows us to 
discuss both levels of programming. The best programmers can “hand-wire” 
solutions when required and make use of high-level libraries and application 
programming interfaces to reduce development time. Lastly, and partly as a 
function of the other reasons listed, C++ is a great choice because once you 
have learned to solve problems in C++, you have learned to solve problems in 
any programming language. Many programmers have discovered how the 
skills learned in one language easily apply to other languages, but this is espe-
cially true for C++ because of its cross-paradigm approach and, frankly, because 
of its difficulty. C++ is the real deal—it’s programming without training wheels. 
This is daunting at first, but once you start succeeding in C++, you’ll know 
that you’re not going to be someone who can do a little coding—you’re going 
to be a programmer. 
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This book is about problem solving, but 
what is problem solving, exactly? When 

people use the term in ordinary conversation, 
they often mean something very different from 

what we mean here. If your 1997 Honda Civic has blue 
smoke coming from the tailpipe, is idling roughly, and
has lost fuel efficiency, this is a problem that can be solved with automotive 
knowledge, diagnosis, replacement equipment, and common shop tools. If 
you tell your friends about your problem, though, one of them might say, 
“Hey, you should trade that old Honda in for something new. Problem solved.” 
But your friend’s suggestion wouldn’t really be a solution to the problem—it 
would be a way to avoid the problem.

Problems include constraints, unbreakable rules about the problem or 
the way in which the problem must be solved. With the broken-down Civic, 
one of the constraints is that you want to fix the current car, not purchase a 
new car. The constraints might also include the overall cost of the repairs, 
how long the repair will take, or a requirement that no new tools can be pur-
chased just for this repair.
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When solving a problem with a program, you also have constraints. Com-
mon constraints include the programming language, platform (does it run 
on a PC, or an iPhone, or what?), performance (a game program may require 
graphics to be updated at least 30 times a second, a business application 
might have a maximum time response to user input), or memory footprint. 
Sometimes the constraint involves what other code you can reference: Maybe 
the program can’t include certain open-source code, or maybe the opposite—
maybe it can use only open source.

For programmers, then, we can define problem solving as writing an original 
program that performs a particular set of tasks and meets all stated constraints.

Beginning programmers are often so eager to accomplish the first part 
of that definition—writing a program to perform a certain task—that they 
fail on the second part of the definition, meeting the stated constraints. I call 
a program like that, one that appears to produce correct results but breaks 
one or more of the stated rules, a Kobayashi Maru. If that name is unfamiliar 
to you, it means you are insufficiently familiar with one of the touchstones of 
geek culture, the film Star Trek II: The Wrath of Khan. The film contains a sub-
plot about an exercise for aspiring officers at Starfleet Academy. The cadets 
are put aboard a simulated starship bridge and made to act as captain on a 
mission that involves an impossible choice. Innocent people will die on a 
wounded ship, the Kobayashi Maru, but to reach them requires starting a 
battle with the Klingons, a battle that can only end in the destruction of the 
captain’s ship. The exercise is intended to test a cadet’s courage under fire. 
There’s no way to win, and all choices lead to bad outcomes. Toward the end 
of the film, we discover that Captain Kirk modified the simulation to make it 
actually winnable. Kirk was clever, but he did not solve the dilemma of the 
Kobayashi Maru; he avoided it.

Fortunately, the problems you will face as a programmer are solvable, 
but many programmers still resort to Kirk’s approach. In some cases, they do 
so accidentally. (“Oh, shoot! My solution only works if there are a hundred 
data items or fewer. It’s supposed to work for an unlimited data set. I’ll have 
to rethink this.”) In other cases, the removal of constraints is deliberate, a 
ploy to meet a deadline imposed by a boss or an instructor. In still other 
cases, the programmer just doesn’t know how to meet all of the constraints. 
In the worst cases I have seen, the programming student has paid someone 
else to write the program. Regardless of the motivations, we must always be 
diligent to avoid the Kobayashi Maru. 

Classic Puzzles

As you progress through this book, you will notice that although the particu-
lars of the source code change from one problem area to the next, certain 
patterns will emerge in the approaches we take. This is great news because 
this is what eventually allows us to confidently approach any problem, whether 
we have extensive experience in that problem area or not. Expert problem 
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solvers are quick to recognize an analogy, an exploitable similarity between 
a solved problem and an unsolved problem. If we recognize that a feature 
of problem A is analogous to a feature of problem B and we have already 
solved problem B, we have a valuable insight into solving problem A.

In this section, we’ll discuss classic problems from outside the world of 
programming that have lessons we can apply to programming problems.

The Fox, the Goose, and the Corn 

The first classic problem we will discuss is a riddle about a farmer who needs 
to cross a river. You have probably encountered it previously in one form or 
another.

P R O B L E M :  H O W  T O  C R O S S  T H E  R I V E R ?

A farmer with a fox, a goose, and a sack of corn needs to cross a river. The farmer 
has a rowboat, but there is room for only the farmer and one of his three items. Unfor-
tunately, both the fox and the goose are hungry. The fox cannot be left alone with the 
goose, or the fox will eat the goose. Likewise, the goose cannot be left alone with the 
sack of corn, or the goose will eat the corn. How does the farmer get everything 
across the river?

The setup for this problem is shown in Figure 1-1. If you have never 
encountered this problem before, stop here and spend a few minutes trying 
to solve it. If you have heard this riddle before, try to remember the solution 
and whether you were able to solve the riddle on your own. 

Figure 1-1: The fox, the goose, and the sack of corn. The boat can 
carry one item at a time. The fox cannot be left on the same shore as 
the goose, and the goose cannot be left on the same shore as the sack 
of corn.

Near Shore

Far Shore

SACK 

O’ 

CORN
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Few people are able to solve this riddle, at least without a hint. I know I 
wasn’t. Here’s how the reasoning usually goes. Since the farmer can take only 
one thing at a time, he’ll need multiple trips to take everything to the far 
shore. On the first trip, if the farmer takes the fox, the goose would be left 
with the sack of corn, and the goose would eat the corn. Likewise, if the farmer 
took the sack of corn on the first trip, the fox would be left with the goose, 
and the fox would eat the goose. Therefore, the farmer must take the goose 
on the first trip, resulting in the configuration shown in Figure 1-2.

Figure 1-2: The required first step for solving the problem of the fox, the 
goose, and the sack of corn. From this step, however, all further steps 
appear to end in failure.

So far, so good. But on the second trip, the farmer must take the fox or 
the corn. Whatever the farmer takes, however, must be left on the far shore 
with the goose while the farmer returns to the near shore for the remaining 
item. This means that either the fox and goose will be left together or the 
goose and corn will be left together. Because neither of these situations is 
acceptable, the problem appears unsolvable.

Again, if you have seen this problem before, you probably remember the 
key element of the solution. The farmer has to take the goose on the first 
trip, as explained before. On the second trip, let’s suppose the farmer takes 
the fox. Instead of leaving the fox with the goose, though, the farmer takes the 

goose back to the near shore. Then the farmer takes the sack of corn across, 
leaving the fox and the corn on the far shore, while returning for a fourth 
trip with the goose. The complete solution is shown in Figure 1-3.

This puzzle is difficult because most people never consider taking one of 
the items back from the far shore to the near shore. Some people will even 
suggest that the problem is unfair, saying something like, “You didn’t say I 
could take something back!” This is true, but it’s also true that nothing in the 
problem description suggests that taking something back is prohibited.

Near Shore

Far Shore

SACK 

O’ 

CORN
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